搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯原子气室中相干布居俘获的参数依赖关系研究

刘智 刁文婷 王杰英 梁强兵 杨保东 何军 张天才 王军民

引用本文:
Citation:

铯原子气室中相干布居俘获的参数依赖关系研究

刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民

Investigation of experimental parameters of coherent population trapping with cesium vapor cell

Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min
PDF
导出引用
  • 基于铯原子基态6S1/2的两个超精细能级(F=3与F=4)与激发态6P3/2的超精细能级 (F'=4)构成的Λ型三能级系统, 采用室温下的未充缓冲气体和充有分压为 266.6 Pa的氖气作为缓冲气体的铯原子气室对于相干布居俘获 (CPT)的参数依赖关系进行了实验研究和理论分析.主要研究了CPT信号的半高全宽和幅度对于频率差为铯原子基态6S1/2的超精细分裂(9.19263177 GHz)且位相锁定的两激光束的功率、光强比值、 光斑直径、磁屏蔽之后的剩余磁场以及是否充缓冲气体等实验参数的依赖关系. 在优化的实验参数条件下获得了约340 Hz的CPT信号半高全宽.
    According to the Λ -type three-level system consisting of cesium 6S1/2 (F=3 and F=4) long-lived ground states and 6P3/2 (F'=4) excited state, we experimentally investigate and theoretically analyze the parameters of coherent population trapping (CPT) spectra in a cesium atomic vapor cell with or without neon as buffer gas. The CPT of the full width at half maximum (FWHM), the signal amplitude as a function of optical intensity of the two phased-locked laser beams with a frequency difference of 9.19263177 GHz (the hyperfine splitting in the cesium ground state 6S1/2), relative intensity ratio, beam spot size, residual magnetic field of the magnetic shielding, and the influence of with and without the cesium vapor cell containing neon as buffer gas are investigated experimentally. With the optimized parameters, we obtain the CPT signal FWHM to be as narrow as ~ 340 Hz.
    • 基金项目: 国家自然科学基金(批准号: 60978017, 61078051, 11104172)、 国家自然科学基金创新群体项目(批准号: 61121064)、国家重点基础研究发展计划 (批准号: 2012CB921601)、 山西省高等学校留学回国人员科研项目和国家自然科学基金大学生人才培养基金项目 (批准号: J1103210)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978017, 61078051, 11104172), the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064), the National Basic Research Program of China (Grant No. 2012CB921601), and the Research Project for Returned Abroad Scholars from Universities of Shanxi Province, China and the Research Training Project for University Students from the National Natural Science Foundation of China (Grant No. J1103210).
    [1]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [2]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

    [3]

    Liu G B, Zhao F, Gu S H 2009 Chin. Phys. B 18 3839

    [4]

    Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew Li-Anne, Moreland J 2004 Appl. Phys. Lett. 85 1460

    [5]

    Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M, Chen X Z 2010 Chin. Phys. B 19 110701

    [6]

    Zhang S G 2009 J. Time {& Frequency} 32 81 (in Chinese) [张首刚 2009 时间频率学报 32 81]

    [7]

    Du R C, Chen J H, Liu C Y, Gu S H 2009 Acta Phys. Sin. 58 6117 (in Chinese) [杜润昌, 陈杰华, 刘朝阳, 顾思洪 2009 58 6117]

    [8]

    Ma L S 2007 Opt. Photon. News, September, 43

    [9]

    Vanier J 2005 Appl. Phys. B 81 421

    [10]

    Diao W T, He J, Liu Z, Yang B D, Wang J M 2012 Opt. Express 20 7480

    [11]

    Affolderbach C, Nagel A, Knappe S, Jung C, Wiedenmann D, Wynands R 2000 Appl. Phys. B 70 407

    [12]

    Thomas J E, Hemmer P R, Ezekiel S, Leiby C C, Picard R H, Willis C R 1982 Phys. Rev. Lett. 48 867

    [13]

    Unks B E, Proite N A, Yavuz D D 2007 Rev. Sci. Instrum. 78 083108

    [14]

    Yun P, Tan B Z, Deng W, Gu S H 2011 Rev. Sci. Instrum. 82 123104

    [15]

    Wynands R, Nagel A 1999 Appl. Phys. B 68 1

    [16]

    Jurgen A, Andrew M, Lvovsky A I 2009 Meas. Sci. Tech. 20 055302

    [17]

    Michael J S, Roger B M C, Erling R 1997 Opt. Lett. 22 892

    [18]

    Moon H S, Park S E, Park Y H, Lee L, Kim J B 2006 J. Opt. Soc. Am. B 23 2393

    [19]

    Chen W L, Qi X H, Yi L, Deng K, Wang Z, Chen J B, Chen X Z 2008 Opt. Lett. 33 357

    [20]

    Levi F, Godone A, Vanier J, Micalizio S, Modugno G 2000 Eur. Phys. J. D 12 53

    [21]

    Knappe S, Wynands R, Kitching J, Robinson H G, Hollberg L 2001 J. Opt. Soc. Am. B 18 1545

    [22]

    Kozlova O, Guerandel S, de Clercq E 2011 Phys. Rev. A 83 062714

    [23]

    Brandt S, Nagel A, Wynands R, Meschede D 1997 Phys. Rev. A 56 1063

    [24]

    Boudot R, Dziuban P, Hasegawa M, Chutani R K, Galliou S, Giordano V, Gorecki C 2011 J. Appl. Phys. 109 014912

    [25]

    Deng K, Guo T, He D W, Liu X Y, Liu L, Guo D Z, Chen X Z, Wang Z 2008 Appl. Phys. Lett. 92 211104

    [26]

    Park S E, Kwon T Y, Lee H S 2003 IEEE Trans. Instrum. Meas. 52 277

    [27]

    Zibrov S A, Velichansky V L, Zibrov A S, Taichenachev A V, Yudin V I 2005 JETP Lett. 82 477

  • [1]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [2]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

    [3]

    Liu G B, Zhao F, Gu S H 2009 Chin. Phys. B 18 3839

    [4]

    Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew Li-Anne, Moreland J 2004 Appl. Phys. Lett. 85 1460

    [5]

    Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M, Chen X Z 2010 Chin. Phys. B 19 110701

    [6]

    Zhang S G 2009 J. Time {& Frequency} 32 81 (in Chinese) [张首刚 2009 时间频率学报 32 81]

    [7]

    Du R C, Chen J H, Liu C Y, Gu S H 2009 Acta Phys. Sin. 58 6117 (in Chinese) [杜润昌, 陈杰华, 刘朝阳, 顾思洪 2009 58 6117]

    [8]

    Ma L S 2007 Opt. Photon. News, September, 43

    [9]

    Vanier J 2005 Appl. Phys. B 81 421

    [10]

    Diao W T, He J, Liu Z, Yang B D, Wang J M 2012 Opt. Express 20 7480

    [11]

    Affolderbach C, Nagel A, Knappe S, Jung C, Wiedenmann D, Wynands R 2000 Appl. Phys. B 70 407

    [12]

    Thomas J E, Hemmer P R, Ezekiel S, Leiby C C, Picard R H, Willis C R 1982 Phys. Rev. Lett. 48 867

    [13]

    Unks B E, Proite N A, Yavuz D D 2007 Rev. Sci. Instrum. 78 083108

    [14]

    Yun P, Tan B Z, Deng W, Gu S H 2011 Rev. Sci. Instrum. 82 123104

    [15]

    Wynands R, Nagel A 1999 Appl. Phys. B 68 1

    [16]

    Jurgen A, Andrew M, Lvovsky A I 2009 Meas. Sci. Tech. 20 055302

    [17]

    Michael J S, Roger B M C, Erling R 1997 Opt. Lett. 22 892

    [18]

    Moon H S, Park S E, Park Y H, Lee L, Kim J B 2006 J. Opt. Soc. Am. B 23 2393

    [19]

    Chen W L, Qi X H, Yi L, Deng K, Wang Z, Chen J B, Chen X Z 2008 Opt. Lett. 33 357

    [20]

    Levi F, Godone A, Vanier J, Micalizio S, Modugno G 2000 Eur. Phys. J. D 12 53

    [21]

    Knappe S, Wynands R, Kitching J, Robinson H G, Hollberg L 2001 J. Opt. Soc. Am. B 18 1545

    [22]

    Kozlova O, Guerandel S, de Clercq E 2011 Phys. Rev. A 83 062714

    [23]

    Brandt S, Nagel A, Wynands R, Meschede D 1997 Phys. Rev. A 56 1063

    [24]

    Boudot R, Dziuban P, Hasegawa M, Chutani R K, Galliou S, Giordano V, Gorecki C 2011 J. Appl. Phys. 109 014912

    [25]

    Deng K, Guo T, He D W, Liu X Y, Liu L, Guo D Z, Chen X Z, Wang Z 2008 Appl. Phys. Lett. 92 211104

    [26]

    Park S E, Kwon T Y, Lee H S 2003 IEEE Trans. Instrum. Meas. 52 277

    [27]

    Zibrov S A, Velichansky V L, Zibrov A S, Taichenachev A V, Yudin V I 2005 JETP Lett. 82 477

  • [1] 韩艳晨, 李昱东, 李维. 相干布居囚禁振荡与拉曼失谐的关系.  , 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] 黄文艺, 杨保东, 樊健, 王军民, 周海涛. 基于铯原子气室反抽运光增强相干蓝光.  , 2022, 71(18): 187801. doi: 10.7498/aps.71.20220480
    [4] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱.  , 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [5] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控.  , 2020, 69(8): 080301. doi: 10.7498/aps.69.20192001
    [6] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究.  , 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [7] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析.  , 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [8] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源.  , 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [9] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究.  , 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [10] 尹毅, 张奕, 谭伯仲, 陈杰华, 顾思洪. 芯片原子钟相干布居囚禁谱线特性研究.  , 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [11] 张维然, 李英姿, 王曦, 王伟, 钱建强. 原子力显微镜高次谐波幅度对样品弹性性质表征的研究.  , 2013, 62(14): 140704. doi: 10.7498/aps.62.140704
    [12] 毕冬艳. 一个特殊模型中的相干布居俘获.  , 2008, 57(8): 4685-4688. doi: 10.7498/aps.57.4685
    [13] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [14] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究.  , 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [15] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [16] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [17] 赵建明, 汪丽蓉, 赵延霆, 马 杰, 肖连团, 贾锁堂. 外加磁场对简并二能级原子系统相干特性的影响.  , 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [18] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [19] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 .  , 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [20] 韩立波, 田永红, 李高翔, 彭金生. 双模SU(1,1)猫态与级联三能级原子的粒子布居相干俘获.  , 2000, 49(4): 696-701. doi: 10.7498/aps.49.696
计量
  • 文章访问数:  8342
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-13
  • 修回日期:  2012-06-26
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map