-
By the reductive perturbation method, we investigate the Rogue waves in a fluid-filled elastic tube. Based on a nonlinear Schrodinger equation obtained from a fluid-filled elastic tube, the rouge wave solution in the fluid-filled elastic tube is discussed. The characteristics of a single rouge waveare studied for this system. Then, the effects of the system parameters, such as the wave number k, the parameters
$\epsilon$ , the density of the fluid, the thickness of the elastic tube, the Yang's modulus of the elastic tube, and the radius of the elastic tube on the rouge wave are also investigated. Finally, the model is applied to the blood vessels of both animal and the human to ascertain the effects of the rouge wave in different arteries and vessels. The results of the present study may have potential applications in medical science.-
Keywords:
- reductive perturbation method /
- nonlinear Schrodinger equation /
- rouge wave /
- blood vessel
[1] Zhen P F, Jia M 2018 Chin. Phys. B 27 120201Google Scholar
[2] Zhang X, Yong C 2018 Nonlinear Dyn. 93 1Google Scholar
[3] 李淑青, 杨光晔, 李禄 2014 63 10
Li S Q, Yang G Y, Li l 2014 Acta Phys. Sin. 63 10
[4] Xin W, Chong L, Lei W 2017 J. Math. Anal. Appl. 449 1534Google Scholar
[5] Dewey J F, Ryan P D 2017 Proc. Natl. Acad. Sci. U.S.A. 114 E10639Google Scholar
[6] Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F T 2013 Phys. Rep. 528 47Google Scholar
[7] Yeom D I, Eggleton, Benjamin J 2007 Nature 450 53
[8] Akhmediev N, Ankiewicz A, Taki M 2009 Phys. Lett. A 373 675Google Scholar
[9] Garrett C, Gemmrich J, Baschek B 2009 Phys. Today 15 3210
[10] Draper L 1967 Mar. Geol. 5 133Google Scholar
[11] Akhmediev N, Soto-Crespo J, Ankiewicz A 2009 Phys. Rev. A 80 82
[12] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V 2015 Phys. Rev. A 5 041026
[13] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar
[14] Moslem W M, Sabry R, El-Labany S K, Shukla P K 2011 Phys. Rev. E 84 066402Google Scholar
[15] Stenflo L, Marklund M 2009 J. Plasma Phys. 76 293
[16] Efimov V B, Ganshin A N, Kolmakov G V, Mcclintock P V E, Mezhov-Deglin L P 2010 Eur. Phys. J. Spec. Top. 185 181Google Scholar
[17] Bludov Y V, Konotop V V, Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169Google Scholar
[18] Schneider T M, Gibson J F, Burke J 2010 Phys. Rev. Lett. 104 104501Google Scholar
[19] Peregrine D H 1983 Anziam J. 25 16
[20] Mohany A, Sadek O, Hassan M 2018 J. Fluid Struct. 79 171Google Scholar
[21] 沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 58 8357Google Scholar
Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar
[22] Demiray H 1996 B Math. Biol. 58 939Google Scholar
[23] Demiray H 2002 Appl. Math. Comput. 133 29
[24] Demiray H 2008 Int. J. Nonlinear Mech. 43 241Google Scholar
[25] Antar N 2002 Int. J. Eng. Sci. 40 1179Google Scholar
[26] Duan W S, Wang B R, Wei R J 1997 Phys. Lett. A 224 154Google Scholar
[27] Lamb G L 1981 Adv. Math. 32 215
[28] Sigeo Y 1987 J. Phys. Soc. Jpn. 56 506Google Scholar
[29] Paquerot J F, Remoissenet M 1994 Phys. Lett A 194 77Google Scholar
[30] Duan W S, Wang B R, Wei R J 1996 J. Phys. Soc. Jpn. 65 945Google Scholar
[31] Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 112Google Scholar
[32] 柳兆荣, 徐刚, 陈泳, 滕忠照, 覃开蓉 2003 应用数学和力学 24 205Google Scholar
Liu Z R, Xu G, Chen Y, Teng Z Z, Qin K R 2003 Adv. Appl. Math. Mech. 24 205Google Scholar
[33] Chuong C J, Fung Y C 1986 J. Biomech. Eng. 108 189Google Scholar
-
-
[1] Zhen P F, Jia M 2018 Chin. Phys. B 27 120201Google Scholar
[2] Zhang X, Yong C 2018 Nonlinear Dyn. 93 1Google Scholar
[3] 李淑青, 杨光晔, 李禄 2014 63 10
Li S Q, Yang G Y, Li l 2014 Acta Phys. Sin. 63 10
[4] Xin W, Chong L, Lei W 2017 J. Math. Anal. Appl. 449 1534Google Scholar
[5] Dewey J F, Ryan P D 2017 Proc. Natl. Acad. Sci. U.S.A. 114 E10639Google Scholar
[6] Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F T 2013 Phys. Rep. 528 47Google Scholar
[7] Yeom D I, Eggleton, Benjamin J 2007 Nature 450 53
[8] Akhmediev N, Ankiewicz A, Taki M 2009 Phys. Lett. A 373 675Google Scholar
[9] Garrett C, Gemmrich J, Baschek B 2009 Phys. Today 15 3210
[10] Draper L 1967 Mar. Geol. 5 133Google Scholar
[11] Akhmediev N, Soto-Crespo J, Ankiewicz A 2009 Phys. Rev. A 80 82
[12] Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V 2015 Phys. Rev. A 5 041026
[13] Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar
[14] Moslem W M, Sabry R, El-Labany S K, Shukla P K 2011 Phys. Rev. E 84 066402Google Scholar
[15] Stenflo L, Marklund M 2009 J. Plasma Phys. 76 293
[16] Efimov V B, Ganshin A N, Kolmakov G V, Mcclintock P V E, Mezhov-Deglin L P 2010 Eur. Phys. J. Spec. Top. 185 181Google Scholar
[17] Bludov Y V, Konotop V V, Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169Google Scholar
[18] Schneider T M, Gibson J F, Burke J 2010 Phys. Rev. Lett. 104 104501Google Scholar
[19] Peregrine D H 1983 Anziam J. 25 16
[20] Mohany A, Sadek O, Hassan M 2018 J. Fluid Struct. 79 171Google Scholar
[21] 沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 58 8357Google Scholar
Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar
[22] Demiray H 1996 B Math. Biol. 58 939Google Scholar
[23] Demiray H 2002 Appl. Math. Comput. 133 29
[24] Demiray H 2008 Int. J. Nonlinear Mech. 43 241Google Scholar
[25] Antar N 2002 Int. J. Eng. Sci. 40 1179Google Scholar
[26] Duan W S, Wang B R, Wei R J 1997 Phys. Lett. A 224 154Google Scholar
[27] Lamb G L 1981 Adv. Math. 32 215
[28] Sigeo Y 1987 J. Phys. Soc. Jpn. 56 506Google Scholar
[29] Paquerot J F, Remoissenet M 1994 Phys. Lett A 194 77Google Scholar
[30] Duan W S, Wang B R, Wei R J 1996 J. Phys. Soc. Jpn. 65 945Google Scholar
[31] Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 112Google Scholar
[32] 柳兆荣, 徐刚, 陈泳, 滕忠照, 覃开蓉 2003 应用数学和力学 24 205Google Scholar
Liu Z R, Xu G, Chen Y, Teng Z Z, Qin K R 2003 Adv. Appl. Math. Mech. 24 205Google Scholar
[33] Chuong C J, Fung Y C 1986 J. Biomech. Eng. 108 189Google Scholar
计量
- 文章访问数: 8206
- PDF下载量: 187
- 被引次数: 0