-
近年来, 卤化物钙钛矿太阳能电池由于其诸多技术优势引起了普遍的关注, 其效率在几年内达到了认证的24.2%, 接近目前已经民用化的晶体硅太阳能电池. 卤化物钙钛矿在外加电场作用下除了具有电荷传输能力外, 还表现出离子迁移现象, 是一种兼具半导体和离子导体特性的材料. 离子迁移不仅直接改变了钙钛矿晶体的局部化学配比, 而且会对材料的电学性质乃至相应器件的工作机理产生极大影响. 本文总结了离子迁移的形成机制、基本特征及其对器件工作过程的影响(如可翻转的光伏现象、电流迟滞现象等), 介绍了一些关于抑制离子迁移的最新研究进展. 目前关于钙钛矿材料中的离子迁移现象的认识仍不全面, 深入理解卤化物钙钛矿材料中的离子迁移现象对推动钙钛矿太阳能电池的发展和应用十分重要.In recent years, metal halide perovskite solar cells have attracted widespread attention due to their unique technological superiority. Remarkable progress of device performance has been achieved in last few years. The certified efficiency has reached 24.2%, which is close to the efficiency of the commercial crystalline silicon solar cells. Halide perovskite is a kind of semiconductor and ionic conductor material, which not only has the ability to transfer charges, but also exhibits the phenomenon of ion migration under an external electric field. Ion migration can directly change the local chemical ratio of perovskite crystals, and can also greatly affect the electrical properties of materials and the working mechanisms of corresponding devices. In this review, the formation mechanism, basic characteristics and effects of ion migration on the working mechanism of the device (such as giant switchable photovoltaic phenomenon, current hysteresis, etc.) are summarized, and then some recent advances in the suppression of ion migration are introduced. Since there exist still many doubts about ion migration in perovskite materials, it is very important to understand the phenomenon of ion migration in perovskite materials in order to promote the development and application of perovskite solar cells.
-
Keywords:
- perovskite /
- solar cells /
- ion migration /
- hysteresis /
- stability
[1] Huang J, Shao Y, Dong Q 2015 J. Phys. Chem. Lett. 6 3218Google Scholar
[2] Nazeeruddin M K, Snaith H 2015 Mrs. Bull. 40 641Google Scholar
[3] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photon. 9 106
[4] Gong J, Darling S B, You F 2015 Energy Environ. Sci. 8 1953Google Scholar
[5] Nrel. gov https://www.nrel.gov/pv/assets/images/efficiency-chart.png [2019-6-27]
[6] Leo K 2015 Nat. Nanotechnol. 10 574Google Scholar
[7] Zhao X, Park N G 2015 Photonics 2 1139Google Scholar
[8] Shahbazi M, Wang H 2016 Sol. Energy 123 74Google Scholar
[9] Yang B, Dyck O, Ming W, Du M H, Das S, Rouleau C M, Duscher G, Geohegan D B, Xiao K 2016 CS Appl. Mater. Inter. 8 32333Google Scholar
[10] Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152Google Scholar
[11] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[12] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar
[13] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Edit. 53 11232Google Scholar
[14] Gao P, Bin Mohd Yusoff A R, Nazeeruddin M K 2018 Nat. Commun. 9 5028Google Scholar
[15] Zheng F, Saldana-Greco D, Liu S, Rappe A M 2015 J. Phys. Chem. Lett. 6 4862Google Scholar
[16] Berry J, Buonassisi T, Egger D A, Hodes G, Kronik L, Loo Y L, Lubomirsky I, Marder S R, Mastai Y, Miller J S, Mitzi D B, Paz Y, Rappe A M, Riess I, Rybtchinski B, Stafsudd O, Stevanovic V, Toney M F, Zitoun D, Kahn A, Ginley D, Cahen D 2015 Adv. Mater. 27 5102Google Scholar
[17] Zhao Y, Liang C, Zhang H, Li D, Tian D, Li G, Jing X, Zhang W, Xiao W, Liu Q, Zhang F, He Z 2015 Energy Environ. Sci. 8 1256Google Scholar
[18] Egger D A, Edri E, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 279Google Scholar
[19] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[20] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[21] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Graetzel M 2015 Energy Environ. Sci. 8 995Google Scholar
[22] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumueller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar
[23] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[24] Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar
[25] Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D 2014 J. Phys. Chem. Lett. 5 3937Google Scholar
[26] Kang D H, Park N G 2019 Adv. Mater. 1805214Google Scholar
[27] Liu P, Wang W, Liu S, Yang H, Shao Z 2019 Adv. Energy Mater. 9 1803017Google Scholar
[28] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[29] Wei J, Li H, Zhao Y, Zhou W, Fu R, Leprince-Wang Y, Yu D, Zhao Q 2016 Nano Energy 26 139Google Scholar
[30] Zhao Y, Zhou W, Tan H, Fu R, Li Q, Lin F, Yu D, Walters G, Sargent E H, Zhao Q 2017 J. Phys. Chem. C 121 14517Google Scholar
[31] Jung H J, Kim D, Kim S, Park J, Dravid V P, Shin B 2018 Adv. Mater. 30 e1802769Google Scholar
[32] Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar
[33] Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar
[34] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[35] Yuan Y, Wang Q, Shao Y, Lu H, Li T, Gruverman A, Huang J 2016 Adv. Energy Mater. 6 1501803Google Scholar
[36] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349Google Scholar
[37] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar
[38] Calado P, Telford A M, Bryant D, Li X, Nelson J, O’Regan B C, Barnes P R F 2016 Nat. Commun. 7 13831Google Scholar
[39] Zhang Y, Liu M, Eperon G E, Leijtens T C, McMeekin D, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L M, Johnston M B, Lin H, Snaith H J 2015 Mater. Horiz. 2 315Google Scholar
[40] Azpiroz J M, Mosconi E, Bisquert J, de Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[41] Mizusaki J, Arai K, Fueki K 1983 Solid State Ionics 11 203Google Scholar
[42] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar
[43] Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar
[44] Zhang Y, Wang Y, Xu Z Q, Liu J, Song J, Xue Y, Wang Z, Zheng J, Jiang L, Zheng C, Huang F, Sun B, Cheng Y B, Bao Q 2016 ACS Nano 10 7031Google Scholar
[45] Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G 2015 J. Phys. Chem. Lett. 6 1645Google Scholar
[46] Yang J H, Yin W J, Park J S, Wei S H 2016 J. Mater. Chem. A 4 13105Google Scholar
[47] Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Mater. Chem. C 4 9060Google Scholar
[48] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[49] Zhang T, Chen H, Bai Y, Xiao S, Zhu L, Hu C, Xue Q, Yang S 2016 Nano Energy 26 620Google Scholar
[50] Egger D A, Kronik L, Rappe A M 2015 Angew. Chem. Int. Edit. 54 12437Google Scholar
[51] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[52] Xiao Z, Du K Z, Meng W, Wang J, Mitzi D B, Yan Y 2017 J. Am. Chem. Soc. 139 6054Google Scholar
[53] Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 35 aad4424
[54] Ansari M I H, Qurashi A, Nazeeruddin M K 2018 J. Photoch. Photobio. C 35 1Google Scholar
[55] Nakazaki J, Segawa H 2018 J. Photoch. Photobio. C 35 74Google Scholar
[56] Chakraborty S, Xie W, Mathews N, Sherburne M, Ahuja R, Asta M, Mhaisalkar S G 2017 ACS Energy Lett. 2 837Google Scholar
[57] Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar
[58] Zhang M, Lyu M, Chen P, Hao M, Yun J H, Wang L 2016 Asia-Pac. J. Chem. Eng. 11 392Google Scholar
[59] Liu C, Li W, Fan J, Mai Y 2018 J. Energy Chem. 27 1054Google Scholar
[60] Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar
[61] Pazoki M, Edvinsson T 2018 Sustain. Energ. Fuels 2 1430Google Scholar
[62] Ganose A M, Savory C N, Scanlon D O 2017 Chem. Commun. 53 20
[63] Chatterjee S, Pal A J 2018 J. Mater. Chem. A 6 3793Google Scholar
[64] Yang B, Pan W, Wu H, Niu G, Yuan J H, Xue K H, Yin L, Du X, Miao X S, Yang X, Xie Q, Tang J 2019 Nat. Commun. 10 1989Google Scholar
[65] Li Q, Yin L, Chen Z, Deng K, Luo S, Zou B, Wang Z, Tang J, Quan Z 2019 Inorg. Chem. 58 1621Google Scholar
[66] Cheng Y, Li H W, Qing J, Yang Q D, Guan Z, Liu C, Cheung S H, So S K, Lee C S, Tsang S W 2016 J. Mater. Chem. A 4 12748Google Scholar
[67] Dhar J, Sil S, Dey A, Sanyal D, Ray P P 2017 J. Phys. Chem. C 121 5515
[68] Kuku T A 1998 Thin Solid Films 325 246Google Scholar
[69] Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 1500962Google Scholar
[70] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar
[71] de Bastiani M, Dell'Erba G, Gandini M, D'Innocenzo V, Neutzner S, Kandada A R S, Grancini G, Binda M, Prato M, Ball J M, Caironi M, Petrozza A 2016 Adv. Energy Mater. 6 1501453Google Scholar
[72] Zhang H M, Lin H, Liang C J, Liu H, Liang J J, Zhao Y, Zhang W G, Sun M J, Xiao W K, Li H, Polizzi S, Li D, Zhang F J, He Z Q, Choy W C H 2015 Adv. Funct. Mater. 25 7226Google Scholar
[73] Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar
[74] Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar
[75] Zhao Y, Zhou W, Ma W, Meng S, Li H, Wei J, Fu R, Liu K, Yu D, Zhao Q 2016 ACS Energy Lett. 1 266Google Scholar
[76] Tian Y, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundström V, Scheblykin I G 2015 Phys. Chem. Chem. Phys. 17 24978Google Scholar
[77] Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar
[78] Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulović V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar
[79] Hu M, Bi C, Yuan Y, Bai Y, Huang J 2016 Adv. Sci. 3 1500301Google Scholar
[80] Walsh A, Scanlon D O, Chen S, Gong X, Wei S H 2015 Angew. Chem. 127 1811Google Scholar
[81] Johnston M B, Herz L M 2016 Accounts Chem. Res. 49 146
[82] Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Mater. Sci. Engin. R-Reports 101 1Google Scholar
[83] Stranks S D, Nayak P K, Zhang W, Stergiopoulos T, Snaith H J 2015 Angew. Chem. Int. Edit. 54 3240Google Scholar
[84] Richardson G, O'Kane S E, Niemann R G, Peltola T A, Foster J M, Cameron P J, Walker A B 2016 Energy Environ. Sci. 9 1476Google Scholar
[85] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar
[86] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar
[87] Hentz O, Zhao Z, Gradecak S 2016 Nano Lett. 16 1485Google Scholar
[88] Bag M, Renna L A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T, Venkataraman D 2015 J. Am. Chem. Soc. 137 13130
[89] Bae S, Kim S, Lee S W, Cho K J, Park S, Lee S, Kang Y, Lee H S, Kim D 2016 J. Phys. Chem. Lett. 7 3091Google Scholar
[90] Yuan Y, Huang J 2016 Accounts Chem. Res. 49 286Google Scholar
[91] Lee H, Ko D, Lee C 2019 ACS Appl. Mater. Inter. 11 11667Google Scholar
[92] Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M 2019 Nat. Commun. 10 1088Google Scholar
[93] Leijtens T, Eperon G E, Barker A J, Grancini G, Zhang W, Ball J M, Kandada A R S, Snaith H J, Petrozza A 2016 Energy Environ. Sci. 9 3472Google Scholar
[94] Zhang T, Meng X, Bai Y, Xiao S, Hu C, Yang Y, Chen H, Yang S 2017 J. Mater. Chem. A 5 1103Google Scholar
[95] Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji I H, de Schryver F, Samori P, Hofkens J, Roeffaers M 2016 J. Phys. Chem. Lett. 7 561Google Scholar
[96] Yang T Y, Jeon N J, Shin H W, Shin S S, Kim Y Y, Seo J 2019 Adv. Sci. 1900528Google Scholar
[97] Fedwa El-Mellouhi S N R, Marzouk A, Kabalan L, Belaidi A, Merzougui B, Tabet N, Alharbi F H 2019 J. Mater. Chem. C 7 5299Google Scholar
[98] Jiang L, Lu J, Raga S R, Sun J, Lin X, Huang W, Huang F, Bach U, Cheng Y B 2019 Nano Energy 58 687Google Scholar
[99] Wu Q, Wu Z Y, Rudd P N, Shao Y C, Dai X Z, Wei H T, Zhao J J, FangY J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J S 2019 Sci. Adv. 5 eaav8925Google Scholar
[100] Ferdani D W, Pering S R, Ghosh D, Kubiak P, Walker A B, Lewis S E, Johnson A L, Baker P J, Islam M S, Cameron P J 2019 Energy Environ. Sci.Google Scholar
[101] Fu W, Liu H, Shi X, Zuo L, Li X, Jen A K Y 2019 Adv. Funct. Mater. 29 1900221
[102] Huang F, Jiang L, Pascoe A R, Yan Y, Bach U, Spiccia L, Cheng Y B 2016 Nano Energy 27 509Google Scholar
[103] Shi J, Xu X, Zhang H, Luo Y, Li D, Meng Q 2015 Appl. Phys. Lett. 107 163901Google Scholar
[104] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[105] Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. 54 7905Google Scholar
[106] Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar
[107] Akbulatov A F, Frolova L A, Griffin M P, Gearba I R, Dolocan A, Vanden Bout D A, Tsarev S, Katz E A, Shestakov A F, Stevenson K J, Troshin P A 2017 Adv. Energy Mater. 7 1700476Google Scholar
[108] Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G 2016 Adv. Energy Mater. 6 1502246Google Scholar
[109] Zohar A, Kedem N, Levine I, Zohar D, Vilan A, Ehre D, Hodes G, Cahen D 2016 J. Phys. Chem. Lett. 7 191
[110] Kato Y, Ono L K, Lee M V, Wang S, Raga S R, Qi Y 2015 Adv. Mater. Interf. 2 1500195Google Scholar
[111] Zhao J, Zheng X, Deng Y, Li T, Shao Y, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 3650Google Scholar
[112] Dong X, Fang X, Lü M, Lin B, Zhang S, Ding J, Yuan N 2015 J. Mater. Chem. A 3 5360Google Scholar
[113] Soe Chan Myae M, Nie W, Stoumpos Constantinos C, Tsai H, Blancon J C, Liu F, Even J, Marks Tobin J, Mohite Aditya D, Kanatzidis Mercouri G 2018 Adv. Energy Mater. 8 1700979
[114] Jiang Q, Zhang X, You J 2018 Small 14 e1801154Google Scholar
[115] Chen Q, de Marco N, Yang Y, Song T B, Chen C C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar
[116] Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar
[117] Zhang T, Long M, Yan K, Qin M, Lu X, Zeng X, Cheng C M, Wong K S, Liu P, Xie W, Xu J 2017 Adv. Energy Mater. 7 1700118Google Scholar
[118] Meggiolaro D, Mosconi E, de Angelis F 2019 ACS Energy Lett. 4 779Google Scholar
[119] Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys.Chem. Chem. Phys. 18 30484Google Scholar
[120] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J 2014 Adv. Mater. 26 6503Google Scholar
[121] Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K, Zhao Y 2016 Nat. Commun. 7 12305Google Scholar
[122] Guo P, Ye Q, Yang X, Zhang J, Xu F, Shchukin D, Wei B, Wang H 2019 J. Mater. Chem. A 7 2497Google Scholar
[123] Xie C, Zhou C, Yang B, Shen L, Ke L, Ding L, Yuan Y 2019 Appl. Phys. Express 12 064006Google Scholar
[124] Bi C, Shao Y, Yuan Y, Xiao Z, Wang C, Gao Y, Huang J 2014 J. Mater. Chem. A 2 18508Google Scholar
[125] Zhao Y, Zhao Y, Zhou W, Li Q, Fu R, Yu D, Zhao Q 2018 ACS Appl. Mater. Inter. 10 33205Google Scholar
[126] Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar
[127] Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman A M, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M 2018 Adv. Mater. 30 e1707583Google Scholar
[128] Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W J, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J 2017 Nat. Photon. 11 726Google Scholar
[129] Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar
[130] Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar
[131] Mosconi E, de Angelis F 2016 ACS Energy Lett. 1 182Google Scholar
[132] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[133] Pang S, Hu H, Zhang J, Lü S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G 2014 Chem. Mater. 26 1485Google Scholar
[134] Lan C, Zhao S, Luo J, Fan P 2018 Phys. Chem. Chem. Phys. 20 24339Google Scholar
[135] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122Google Scholar
[136] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mater. 28 284
[137] Binek A, Hanusch F C, Docampo P, Bein T 2015 J. Phys. Chem. Lett. 6 1249Google Scholar
[138] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693
[139] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M 2016 Phys. Status Solidi-R. 10 583Google Scholar
[140] Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107Google Scholar
[141] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar
[142] Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028Google Scholar
[143] Liu X, Zhang Y, Shi L, Liu Z, Huang J, Yun J S, Zeng Y, Pu A, Sun K, Hameiri Z, Stride J A, Seidel J, Green M A, Hao X 2018 Adv. Energy Mater. 8 1800138
[144] Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar
[145] Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Solar. Rrl. 2 1800164Google Scholar
[146] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar
[147] Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar
[148] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[149] Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173Google Scholar
[150] Ye T, Bruno A, Han G, Koh T M, Li J, Jamaludin N F, Soci C, Mhaisalkar S G, Leong W L 2018 Adv. Funct. Mater. 28 1801654Google Scholar
[151] Liu G, Zheng H, Xu X X, Zhu L, Alsaedi A, Hayat T, Pan X, Dai S 2018 J. Mater. Chem. A 6 18067Google Scholar
[152] Koh T M, Shanmugam V, Guo X T, Lim S S, Filonik O, Herzig E M, Müller-Buschbaum P, Swamy V, Chien S T, Mhaisalkar S G, Mathews N 2018 J. Mater. Chem. A 6 2122−2128Google Scholar
[153] Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar
[154] Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar
[155] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar
[156] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R 2016 Nat. Photon. 10 699Google Scholar
[157] Shang Q, Wang Y, Zhong Y, Mi Y, Qin L, Zhao Y, Qiu X, Liu X, Zhang Q 2017 J. Phys. Chem. Lett. 8 4431Google Scholar
[158] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar
[159] Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar
[160] Yan J, Qiu W, Wu G, Heremans P, Chen H 2018 J. Mater. Chem. A 6 11063Google Scholar
[161] Zhang X, Munir R, Xu Z, Liu Y, Tsai H, Nie W, Li J, Niu T, Smilgies D M, Kanatzidis M G, Mohite A D, Zhao K, Amassian A, Liu S F 2018 Adv. Mater. 30 e1707166Google Scholar
[162] Liu G, Zheng H, Xu X, Xu S, Zhang X, Pan X, Dai S 2019 Adv. Funct. Mater. 1807565Google Scholar
[163] Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy. Mater. 8 1800051Google Scholar
[164] Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392
[165] Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar
[166] Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z 2018 Joule 2 2732Google Scholar
[167] Peng W, Yin J, Ho K T, Ouellette O, de Bastiani M, Murali B, El Tall O, Shen C, Miao X, Pan J, Alarousu E, He J H, Ooi B S, Mohammed O F, Sargent E, Bakr O M 2017 Nano Lett. 17 4759Google Scholar
[168] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
-
图 1 (a)典型的平面型钙钛矿电池正反扫I-V曲线图, 扫描速度为0.20 V/s, I-V曲线正反扫不重合, 表现出电流迟滞现象[28]; (b)影响电流迟滞的因素和(c)导致电流迟滞的可能原因
Fig. 1. (a) Typical I-V character of the planner structure perovskite solar cell with the scan rate was 0.20 V/s, which expressived the obvious hysteresis; (b) the parameters lead to the hysteresis and (c) the possible reasons responsible for the hysteresis.
图 2 (a), (b), 用于测试可翻转光伏效应的垂直结构钙钛矿器件示意图以及器件在–2.5 V到2.5 V之间以0.14 V/s速度扫描时的I-V曲线, 显示出可翻转的光伏效应; (c), (d)分别为原位观察横向结构器件电极化过程时的材料变化的设备示意图和极化过程中钙钛矿材料变化的光学显微镜图, 其中极化电场强度约为1.2 V/μm[42]; (e)极化前后KPFM测试的钙钛矿薄膜的表面势图; (f) 横向器件Au/MAPbI3/Au极化(1.2 V/µm, 100 s)前后材料的能级结构示意图[43]; (g)第一性原理计算的I–离子在MAPbI3钙钛矿构成单元
${\rm{Pb}}{{\rm{I}}_6^{4-}}$ 八面体中沿着I–-I–边界的迁移路径图[34]Fig. 2. (a), (b) Diagram of the lateral structure perovskite device used to test the giant switchable photovoltaic effect and the I-V curve at a speed of 0.14 V/s between –2.5 V and 2.5 V, showing a switchable photovoltaic effect; (c), (d) illustration of the set-up used for in situ monitoring the material changes of perovskite films under electric poling process and the corresponding optical microscope photos of perovskite materials, in which the electric field applied on the perovskite film was about 1.2 V/μm[42]; (e) KPFM potential images of the MAPbI3 thin films before and after electrical poling (1.2 V/µm, 100 s); (f) schematic diagram of the energy level of the lateral device Au/MAPbI3/Au before and after the polarization[43]; (g) the migration path calculated by the first principle for I– ions in the
${\rm{Pb}}{{\rm{I}}_6^{4-}}$ octahedron, which is the constituent unit of the MAPbI3, along the I–-I– boundary[34].图 4 MAPbI3钙钛矿材料中的可迁移离子、缺陷、填隙和杂质离子及其可能迁移的路径示意图, 包括I空位(a),
${\rm{I}}_{\rm{i}}^ - $ 填隙(b), MA空位(c),${\rm{MA}}_{\rm{i}}^ + $ 填隙(d), 以及I离子、MA离子和其他存在的杂质离子(e)Fig. 4. Schematic illustration ofmobile ions, defects, interstitial and impurity ions in MAPbI3 and their possible migration paths, including, I vacancies (a), interstitialI ions (b), MA vacancies (c), interstitial MA ions (d), I ions, MA ions, and extrinsic impurities (e)
图 5 (a) 钙钛矿晶体结构图; (b) 钙钛矿中Pb-I平面中I–离子移动路径和(c) MA-I平面中MA+离子移动的路径[34]; 各种缺陷迁移路径(d)
${\rm{V}}_{\rm{I}}^ + $ , (e)${\rm{V}}_{{\rm{MA}}}^ - $ , (f)${\rm{V}}_{{\rm{Pb}}}^{2 - }$ 和碘填隙迁移路径(g) II[40]Fig. 5. (a) Structure diagram of perovskite crystal; migration paths for I– ion in Pb-I plane (b) and MA+ ion in MA-I plane (c)[34]; diffusion pathsfor
${\rm{V}}_{\rm{I}}^ + $ (d),${\rm{V}}_{{\rm{MA}}}^ - $ (e),${\rm{V}}_{{\rm{Pb}}}^{2 - }$ (f) and interstitial iodine ion II (g) respectively[40].图 6 (a) PTIR显微镜下MAPbI3薄膜在1.6 V/μm电场极化100和200 s前后, MA+离子的分布图, 其中电极间距为100 μm[43]; (b)实验中用XPS方法于测试元素分布的横向器件和实验装置示意图及测得的从阳极到阴极之间的I/Pb比例分布图(c), 施加的直流电压为1 V, 持续时间30 min, 两电极间的横向距离为200 μm, 其中位置“0”为接近正极处, 位置“8”为接近阴极处[70]; (d)横向器件中具有PbI2条形区域的SEM和XRD分析, 对横向结构的MAPbI3薄膜电场极化后具有典型的PbI2条形区域的SEM图(d)和极化前后的XRD图(e); (f), (h)EDX测试下的具有PbI2条形区域的横向钙钛矿器件的碘元素(f)和铅元素(h)分布图; (g), (i) 分别为碘元素和铅元素在(f), (h) 白线处的浓度变化曲线[35]
Fig. 6. (a) Corresponding PTIR images for the CH3 asymmetric deformation absorption of the methylammonium ion (1468 cm–1) obtained before, after 100 s and after 200 s electrical poling, respectively. The poling field was 1.6 V/µm and the distance between the electrode is 100 μm[43]. (b) Illustration of the set-up for characterization of elements distribution using a lateral structure with XPS method and the obtained I/Pb ration against position from anode side to cathode side (c). The applied DC voltage is 1 V for 30 min. The lateral distance between two electrodes is 200 µm. Position 0 is near the anode and position 8 is near cathode side[70]. (d) SEM and XRD study of the lateral devices with a PbI2 thread. By electric polarization of MAPbI3 films with lateral symmetric electrode structure, SEM image (d) of a typical PbI2 thread, (e) XRD spectra of the MAPbI3 film before and after the formation of a PbI2 thread. (f), (h) The distribution diagram of iodine (f) and lead element (h) of lateral perovskite device with PbI2 thread line under energy dispersion X-ray (EDX) test. (g), (i) The concentration curves of iodine (g) and lead (i) at the white line in Figs. (f) and (h), respectively[35].
图 7 (a) MAPbI3合成简图; (b) 红色区域为MAPbI3中达到热力学平衡生长时的热力学稳定区域; (c) MAPbI3中化学势在A, B, C (图7(b)中A, B, C处)位置时内部点缺陷的形成能, 虚线代表具有更高形成能的缺陷; (d), (e) 分别为通过计算得到的MAPbI3钙钛矿中内部电子受体和给体的传输能级[51]
Fig. 7. (a) Schematic diagram of the MAPbI3 unit cell. (b) The thermodynamic stability range for equilibriμm growth of MAPbI3 is in the red region. The formation energies of intrinsic point defects in MAPbI3 at chemical potentials A, B, and C shown in (c), where defects with much high formation energies have displayed as dashed lines. The calculated transition energy levels of (d) intrinsic acceptors and (e) intrinsic donors in MAPbI3. Dashed lines stand for the defects that have much higher formation energy so that they cannot exist[51].
图 8 (a) 短路时离子和带电缺陷迁移对p-i-n器件能带的影响, Ec为导带, Ev为价带, Vbi为内建电场; 带有加号的方格表示碘离子空位; (b)不同偏压条件和时间下计时光电流测量时假设的能级结构图, 导带和价带的变化对应于碘离子空位在不同外加偏压和作用时间下与界面之间的再分布[34]
Fig. 8. (a) Schematic representation indicating the impact of ion vacancy drift on the band energies of a p-i-n device at short circuit conditions. Ec is the conduction band energy, Ev is the valence band energy and Vbi is the built-in potential. The squares with “plus” signs indicate the iodide ion vacancies. Implicit in the diagram is that the vacancies with effective positive charges are balanced by immobile cation vacancies (not shown) with effective negative charges. (b) Hypothesized energy level configurations corresponding to different bias conditions and times during the chrono-photoamperometry measurements. The variation in the conduction and valence bands corresponds to the redistribution of iodide ion vacancies to and from interfaces with different applied potentials and times[34].
图 9 (a)固态薄膜中不同数量外部缺陷情况下典型的离子电导
$\ln {\sigma _{\rm{i}}}\text{ -} 1/T$ 曲线图, 其中EA是离子迁移的活化能, ED是热激发点缺陷的形成能; (b)通过变温测试MAPbI3钙钛矿离子电导, 结合阿伦尼伍兹方程拟合离子迁移活化能EA[43]; (c)具有离子迁移过程的卤化物钙钛矿的电化学阻抗谱图, 在低频区域阻抗表现出线性变化, 说明具有离子传输特性, 其等效电路如图中插图, 虚线框中为低频区等效电路图, 图中的Ws是Warburg阻抗单元, Rct是界面电荷传输阻抗, Cdl是所有在界面聚集的离子相关的德拜层电容[88]; (d)通过瞬态光电流弛豫时间常数结合阿伦尼乌斯方程拟合离子迁移激活能[34]Fig. 9. (a) Typical
$\ln {\sigma _{\rm{i}}} \text{-} 1/T$ curves for ion conduction in solid with different amount of extrinsic defects, where EA is the activation energy for ion migration, ED is the formation energy for thermal-excited point defects. (b) Arrhenius plot of the conductivity of the MAPbI3 film under dark (blue) and illμmination (red, the light intensity is 0.25 mW/cm)[43]. (c) Typical Nyquist plot for mixed conductor system with Warburg diffusion as evidence by the linear portion of the low frequency regime. Equivalent circuit diagram was showedin the figure and the dashed line islowfrequency ionic elements. Ws is the Warburg component, Rct is the interfacial charge transfer and Cdl is modeled as an interfacial an interfacial Debye-layer capacitance[88]. (d) Calculation of activation energy of ion migration by transient photocurrent combined with Arius drawing method[34].图 10 (a) MAPb(Br0.6I0.4)3的XRD和PL图, 左图表示MAPb(Br0.6I0.4)3膜在光浸泡前(黑色)和在约50 mW·cm–2下白光浸泡5 min (红色)以及置于暗态下2 h (蓝色)的XRD图谱, 右图通过打开(457 nm, 15 mW·cm–2)和关闭激发光(黑暗中5 min后), 光谱可以在这两种状态之间重复循环[86]; (b) 电场下MAPbI3和PbI2之间的可逆转换, 左边为横向MAPbI3钙钛矿太阳能电池的横截面图, 其中在阳极下方形成PbI2线, 右图具有PbI2线移向阴极的侧向MAPbI3器件的图示, 这是由“区域A/区域B”和“区域B/区域C”界面上分别发生的两组固态化学反应造成[35]; (c) 极化前(左)和极化后(右)带银电极的钙钛矿横向结构的SEM俯视图; “ + ”和“-”符号表示不同的电极极化[71]
Fig. 10. (a) XRD and PL of MAPb(Br0.6I0.4)3. The black line in the left XRD indicates that the MAPb(Br0.6I0.4)3 film has not been soaked by light, the red line represents the sample soaked for 5 minutes in white light at ~50 mW·cm–2, and the blue line indicates that it is placed in the dark state 2 hour. On the right, by turning on (457 nm, 15 mW·cm–2) and turning off the excitation light (after 5 minutes in the dark), the spectrum can be repeated between two states[86]. (b) Reversible conversion between MAPbI3 and PbI2 under electric field. On the left is a cross-sectional view of lateral MAPbI3 perovskite solar cell in which PbI2 line is formed below the anode. The image to the right shows a schematic representation of the lateral MAPbI3 device with the PbI2 line moving toward the cathode, which is caused by two sets of solid-state chemical reactions that occur at the “A/B” and “Region B/C” interfaces, respectively[35]. (c) SEM top view of the perovskite transverse structure with silver electrodes before (left) and after polarization (right). The “ + ” and “–” symbols indicate different electrode polarizations[71].
图 11 (a) 大晶粒尺寸(左)和小晶粒尺寸(右)薄膜的温度依赖离子电导性图[119]; (b) 状态密度(DOS)的DFT计算表明, Pb-I抗静电缺陷引起的深陷阱态(黑色)减少, 并且当PCBM吸附在有缺陷的卤化物上时变得更浅(红色)[73]; (c) NMR图示, PCBM中特征峰—CH2—在PCBM + MAI和PCBM + PbI2中均有位移, 表明碘和PCBM之间的相互作用[75]; (d) 原位交联有机/钙钛矿薄膜的示意图, ①中具有显着羰基(蓝色)和烯基(红色)基团的TMTA的化学结构, ②在热条件下TMTA的交联聚合, ③TMTA化学锚定到MAPbI3的晶界, 然后原位交联到连续的网络聚合物[126]
Fig. 11. (a) Temperature-dependent ion conductivity of large grain size (left) and small grain size (right) films figure[119]. (b) DFT calculations show that the deep trap state (black) caused by Pb-I antistatic defects is reduced and becomes lighter (red) when PCBM is adsorbed on the defective halide[73]. (c) NMR shows that the characteristic peak —CH2— in PCBM is shifted in both PCBM + MAI and PCBM + PbI2, indicating the interaction between iodine and PCBM[75]. (d) Schematic diagram of in situ cross-linking of organic/perovskite films: ① Chemical structure of TMTA having significant carbonyl (blue) and alkenyl (red) groups; ② crosslinking polymerization of TMTA under hot conditions; ③ TMTA is chemically anchored to the grain boundaries of MAPbI3 and then crosslinked in situ to the continuous network polymer[126].
图 12 (a) MAPbI3 (黑色方块)和FAPbI3 (红色圆圈)装置下暗稳定性(~20%相对湿度(RH))[94]; (b)在不同光强下, CsPbI2Br薄膜的温度依赖离子电导性图, 拟合得离子迁移活化能为常数(~0.45 eV)[135]; (c) FA1–xCsxPbI3的温度依赖性XRD图, 纯FAPbI3的δ-α相转变在约165 ℃发生, 掺15% Cs则δ-α相转变温度降低至约125 ℃[136]; (d) CsxR1–xPbBr3 (R = Li+, Na+, K+和Rb+)的XRD图(左)及平均晶粒大小图(右)[145]
Fig. 12. (a) Dark stability (~20% RH) of MAPbI3 (black squares) and FAPbI3 (red circles) devices[94]; (b) the ion mobility activation energy of CsPbI2Br film is constant (~0.45 eV) under different light intensities[135]; (c) the temperature-dependent XRD pattern of FA1–xCsxPbI3, the δ-α phase transition of FAPbI3 occurs at about 165 ℃, and the δ-α phase transition temperature is reduced to about 125 ℃ when 15% Cs is doped[136]; (d) XRD pattern (left) and average grain size map (right) of CsxR1–xPbBr3 (R = Li+, Na+, K+ and Rb+)[145].
表 1 理论计算和实验测试的MAPbI3中可迁移离子的离子活化能对比
Table 1. Comparison of ion activation energies (EA) between theoretical calculations and experimental measurements of the migration ions in the MAPbI3 film.
表 2 在化学势分别为A, B, C, 如图7(c)中A, B, C处时, MAPbI3钙钛矿材料中内部中性点缺陷的形成能(单位: eV)[51]
Table 2. The formation energies (unit: eV) of the neutral defects in MAPbI3 at chemical potential points A, B, and C[51].
位置 Ii MAPb VMA VPb IMA IPb MAi PbA VI Pbi MAI PbI A 0.23 0.28 0.81 0.29 1.96 1.53 1.39 2.93 1.87 4.24 3.31 5.44 B 0.83 1.15 1.28 1.62 3.01 3.45 0.93 2.51 1.27 2.91 2.25 3.62 C 1.42 1.47 2.01 2.68 4.34 5.10 0.20 1.74 0.67 1.85 0.93 1.97 -
[1] Huang J, Shao Y, Dong Q 2015 J. Phys. Chem. Lett. 6 3218Google Scholar
[2] Nazeeruddin M K, Snaith H 2015 Mrs. Bull. 40 641Google Scholar
[3] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photon. 9 106
[4] Gong J, Darling S B, You F 2015 Energy Environ. Sci. 8 1953Google Scholar
[5] Nrel. gov https://www.nrel.gov/pv/assets/images/efficiency-chart.png [2019-6-27]
[6] Leo K 2015 Nat. Nanotechnol. 10 574Google Scholar
[7] Zhao X, Park N G 2015 Photonics 2 1139Google Scholar
[8] Shahbazi M, Wang H 2016 Sol. Energy 123 74Google Scholar
[9] Yang B, Dyck O, Ming W, Du M H, Das S, Rouleau C M, Duscher G, Geohegan D B, Xiao K 2016 CS Appl. Mater. Inter. 8 32333Google Scholar
[10] Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152Google Scholar
[11] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[12] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar
[13] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Edit. 53 11232Google Scholar
[14] Gao P, Bin Mohd Yusoff A R, Nazeeruddin M K 2018 Nat. Commun. 9 5028Google Scholar
[15] Zheng F, Saldana-Greco D, Liu S, Rappe A M 2015 J. Phys. Chem. Lett. 6 4862Google Scholar
[16] Berry J, Buonassisi T, Egger D A, Hodes G, Kronik L, Loo Y L, Lubomirsky I, Marder S R, Mastai Y, Miller J S, Mitzi D B, Paz Y, Rappe A M, Riess I, Rybtchinski B, Stafsudd O, Stevanovic V, Toney M F, Zitoun D, Kahn A, Ginley D, Cahen D 2015 Adv. Mater. 27 5102Google Scholar
[17] Zhao Y, Liang C, Zhang H, Li D, Tian D, Li G, Jing X, Zhang W, Xiao W, Liu Q, Zhang F, He Z 2015 Energy Environ. Sci. 8 1256Google Scholar
[18] Egger D A, Edri E, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 279Google Scholar
[19] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[20] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[21] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Graetzel M 2015 Energy Environ. Sci. 8 995Google Scholar
[22] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumueller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar
[23] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[24] Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar
[25] Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D 2014 J. Phys. Chem. Lett. 5 3937Google Scholar
[26] Kang D H, Park N G 2019 Adv. Mater. 1805214Google Scholar
[27] Liu P, Wang W, Liu S, Yang H, Shao Z 2019 Adv. Energy Mater. 9 1803017Google Scholar
[28] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[29] Wei J, Li H, Zhao Y, Zhou W, Fu R, Leprince-Wang Y, Yu D, Zhao Q 2016 Nano Energy 26 139Google Scholar
[30] Zhao Y, Zhou W, Tan H, Fu R, Li Q, Lin F, Yu D, Walters G, Sargent E H, Zhao Q 2017 J. Phys. Chem. C 121 14517Google Scholar
[31] Jung H J, Kim D, Kim S, Park J, Dravid V P, Shin B 2018 Adv. Mater. 30 e1802769Google Scholar
[32] Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar
[33] Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar
[34] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[35] Yuan Y, Wang Q, Shao Y, Lu H, Li T, Gruverman A, Huang J 2016 Adv. Energy Mater. 6 1501803Google Scholar
[36] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349Google Scholar
[37] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar
[38] Calado P, Telford A M, Bryant D, Li X, Nelson J, O’Regan B C, Barnes P R F 2016 Nat. Commun. 7 13831Google Scholar
[39] Zhang Y, Liu M, Eperon G E, Leijtens T C, McMeekin D, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L M, Johnston M B, Lin H, Snaith H J 2015 Mater. Horiz. 2 315Google Scholar
[40] Azpiroz J M, Mosconi E, Bisquert J, de Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[41] Mizusaki J, Arai K, Fueki K 1983 Solid State Ionics 11 203Google Scholar
[42] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar
[43] Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar
[44] Zhang Y, Wang Y, Xu Z Q, Liu J, Song J, Xue Y, Wang Z, Zheng J, Jiang L, Zheng C, Huang F, Sun B, Cheng Y B, Bao Q 2016 ACS Nano 10 7031Google Scholar
[45] Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G 2015 J. Phys. Chem. Lett. 6 1645Google Scholar
[46] Yang J H, Yin W J, Park J S, Wei S H 2016 J. Mater. Chem. A 4 13105Google Scholar
[47] Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Mater. Chem. C 4 9060Google Scholar
[48] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[49] Zhang T, Chen H, Bai Y, Xiao S, Zhu L, Hu C, Xue Q, Yang S 2016 Nano Energy 26 620Google Scholar
[50] Egger D A, Kronik L, Rappe A M 2015 Angew. Chem. Int. Edit. 54 12437Google Scholar
[51] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[52] Xiao Z, Du K Z, Meng W, Wang J, Mitzi D B, Yan Y 2017 J. Am. Chem. Soc. 139 6054Google Scholar
[53] Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 35 aad4424
[54] Ansari M I H, Qurashi A, Nazeeruddin M K 2018 J. Photoch. Photobio. C 35 1Google Scholar
[55] Nakazaki J, Segawa H 2018 J. Photoch. Photobio. C 35 74Google Scholar
[56] Chakraborty S, Xie W, Mathews N, Sherburne M, Ahuja R, Asta M, Mhaisalkar S G 2017 ACS Energy Lett. 2 837Google Scholar
[57] Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar
[58] Zhang M, Lyu M, Chen P, Hao M, Yun J H, Wang L 2016 Asia-Pac. J. Chem. Eng. 11 392Google Scholar
[59] Liu C, Li W, Fan J, Mai Y 2018 J. Energy Chem. 27 1054Google Scholar
[60] Liang L, Gao P 2018 Adv. Sci. 5 1700331Google Scholar
[61] Pazoki M, Edvinsson T 2018 Sustain. Energ. Fuels 2 1430Google Scholar
[62] Ganose A M, Savory C N, Scanlon D O 2017 Chem. Commun. 53 20
[63] Chatterjee S, Pal A J 2018 J. Mater. Chem. A 6 3793Google Scholar
[64] Yang B, Pan W, Wu H, Niu G, Yuan J H, Xue K H, Yin L, Du X, Miao X S, Yang X, Xie Q, Tang J 2019 Nat. Commun. 10 1989Google Scholar
[65] Li Q, Yin L, Chen Z, Deng K, Luo S, Zou B, Wang Z, Tang J, Quan Z 2019 Inorg. Chem. 58 1621Google Scholar
[66] Cheng Y, Li H W, Qing J, Yang Q D, Guan Z, Liu C, Cheung S H, So S K, Lee C S, Tsang S W 2016 J. Mater. Chem. A 4 12748Google Scholar
[67] Dhar J, Sil S, Dey A, Sanyal D, Ray P P 2017 J. Phys. Chem. C 121 5515
[68] Kuku T A 1998 Thin Solid Films 325 246Google Scholar
[69] Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 1500962Google Scholar
[70] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar
[71] de Bastiani M, Dell'Erba G, Gandini M, D'Innocenzo V, Neutzner S, Kandada A R S, Grancini G, Binda M, Prato M, Ball J M, Caironi M, Petrozza A 2016 Adv. Energy Mater. 6 1501453Google Scholar
[72] Zhang H M, Lin H, Liang C J, Liu H, Liang J J, Zhao Y, Zhang W G, Sun M J, Xiao W K, Li H, Polizzi S, Li D, Zhang F J, He Z Q, Choy W C H 2015 Adv. Funct. Mater. 25 7226Google Scholar
[73] Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar
[74] Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar
[75] Zhao Y, Zhou W, Ma W, Meng S, Li H, Wei J, Fu R, Liu K, Yu D, Zhao Q 2016 ACS Energy Lett. 1 266Google Scholar
[76] Tian Y, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundström V, Scheblykin I G 2015 Phys. Chem. Chem. Phys. 17 24978Google Scholar
[77] Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar
[78] Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulović V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar
[79] Hu M, Bi C, Yuan Y, Bai Y, Huang J 2016 Adv. Sci. 3 1500301Google Scholar
[80] Walsh A, Scanlon D O, Chen S, Gong X, Wei S H 2015 Angew. Chem. 127 1811Google Scholar
[81] Johnston M B, Herz L M 2016 Accounts Chem. Res. 49 146
[82] Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Mater. Sci. Engin. R-Reports 101 1Google Scholar
[83] Stranks S D, Nayak P K, Zhang W, Stergiopoulos T, Snaith H J 2015 Angew. Chem. Int. Edit. 54 3240Google Scholar
[84] Richardson G, O'Kane S E, Niemann R G, Peltola T A, Foster J M, Cameron P J, Walker A B 2016 Energy Environ. Sci. 9 1476Google Scholar
[85] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar
[86] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar
[87] Hentz O, Zhao Z, Gradecak S 2016 Nano Lett. 16 1485Google Scholar
[88] Bag M, Renna L A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T, Venkataraman D 2015 J. Am. Chem. Soc. 137 13130
[89] Bae S, Kim S, Lee S W, Cho K J, Park S, Lee S, Kang Y, Lee H S, Kim D 2016 J. Phys. Chem. Lett. 7 3091Google Scholar
[90] Yuan Y, Huang J 2016 Accounts Chem. Res. 49 286Google Scholar
[91] Lee H, Ko D, Lee C 2019 ACS Appl. Mater. Inter. 11 11667Google Scholar
[92] Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M 2019 Nat. Commun. 10 1088Google Scholar
[93] Leijtens T, Eperon G E, Barker A J, Grancini G, Zhang W, Ball J M, Kandada A R S, Snaith H J, Petrozza A 2016 Energy Environ. Sci. 9 3472Google Scholar
[94] Zhang T, Meng X, Bai Y, Xiao S, Hu C, Yang Y, Chen H, Yang S 2017 J. Mater. Chem. A 5 1103Google Scholar
[95] Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji I H, de Schryver F, Samori P, Hofkens J, Roeffaers M 2016 J. Phys. Chem. Lett. 7 561Google Scholar
[96] Yang T Y, Jeon N J, Shin H W, Shin S S, Kim Y Y, Seo J 2019 Adv. Sci. 1900528Google Scholar
[97] Fedwa El-Mellouhi S N R, Marzouk A, Kabalan L, Belaidi A, Merzougui B, Tabet N, Alharbi F H 2019 J. Mater. Chem. C 7 5299Google Scholar
[98] Jiang L, Lu J, Raga S R, Sun J, Lin X, Huang W, Huang F, Bach U, Cheng Y B 2019 Nano Energy 58 687Google Scholar
[99] Wu Q, Wu Z Y, Rudd P N, Shao Y C, Dai X Z, Wei H T, Zhao J J, FangY J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J S 2019 Sci. Adv. 5 eaav8925Google Scholar
[100] Ferdani D W, Pering S R, Ghosh D, Kubiak P, Walker A B, Lewis S E, Johnson A L, Baker P J, Islam M S, Cameron P J 2019 Energy Environ. Sci.Google Scholar
[101] Fu W, Liu H, Shi X, Zuo L, Li X, Jen A K Y 2019 Adv. Funct. Mater. 29 1900221
[102] Huang F, Jiang L, Pascoe A R, Yan Y, Bach U, Spiccia L, Cheng Y B 2016 Nano Energy 27 509Google Scholar
[103] Shi J, Xu X, Zhang H, Luo Y, Li D, Meng Q 2015 Appl. Phys. Lett. 107 163901Google Scholar
[104] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[105] Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. 54 7905Google Scholar
[106] Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar
[107] Akbulatov A F, Frolova L A, Griffin M P, Gearba I R, Dolocan A, Vanden Bout D A, Tsarev S, Katz E A, Shestakov A F, Stevenson K J, Troshin P A 2017 Adv. Energy Mater. 7 1700476Google Scholar
[108] Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G 2016 Adv. Energy Mater. 6 1502246Google Scholar
[109] Zohar A, Kedem N, Levine I, Zohar D, Vilan A, Ehre D, Hodes G, Cahen D 2016 J. Phys. Chem. Lett. 7 191
[110] Kato Y, Ono L K, Lee M V, Wang S, Raga S R, Qi Y 2015 Adv. Mater. Interf. 2 1500195Google Scholar
[111] Zhao J, Zheng X, Deng Y, Li T, Shao Y, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 3650Google Scholar
[112] Dong X, Fang X, Lü M, Lin B, Zhang S, Ding J, Yuan N 2015 J. Mater. Chem. A 3 5360Google Scholar
[113] Soe Chan Myae M, Nie W, Stoumpos Constantinos C, Tsai H, Blancon J C, Liu F, Even J, Marks Tobin J, Mohite Aditya D, Kanatzidis Mercouri G 2018 Adv. Energy Mater. 8 1700979
[114] Jiang Q, Zhang X, You J 2018 Small 14 e1801154Google Scholar
[115] Chen Q, de Marco N, Yang Y, Song T B, Chen C C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar
[116] Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar
[117] Zhang T, Long M, Yan K, Qin M, Lu X, Zeng X, Cheng C M, Wong K S, Liu P, Xie W, Xu J 2017 Adv. Energy Mater. 7 1700118Google Scholar
[118] Meggiolaro D, Mosconi E, de Angelis F 2019 ACS Energy Lett. 4 779Google Scholar
[119] Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys.Chem. Chem. Phys. 18 30484Google Scholar
[120] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J 2014 Adv. Mater. 26 6503Google Scholar
[121] Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K, Zhao Y 2016 Nat. Commun. 7 12305Google Scholar
[122] Guo P, Ye Q, Yang X, Zhang J, Xu F, Shchukin D, Wei B, Wang H 2019 J. Mater. Chem. A 7 2497Google Scholar
[123] Xie C, Zhou C, Yang B, Shen L, Ke L, Ding L, Yuan Y 2019 Appl. Phys. Express 12 064006Google Scholar
[124] Bi C, Shao Y, Yuan Y, Xiao Z, Wang C, Gao Y, Huang J 2014 J. Mater. Chem. A 2 18508Google Scholar
[125] Zhao Y, Zhao Y, Zhou W, Li Q, Fu R, Yu D, Zhao Q 2018 ACS Appl. Mater. Inter. 10 33205Google Scholar
[126] Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar
[127] Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman A M, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M 2018 Adv. Mater. 30 e1707583Google Scholar
[128] Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W J, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J 2017 Nat. Photon. 11 726Google Scholar
[129] Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar
[130] Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar
[131] Mosconi E, de Angelis F 2016 ACS Energy Lett. 1 182Google Scholar
[132] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[133] Pang S, Hu H, Zhang J, Lü S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G 2014 Chem. Mater. 26 1485Google Scholar
[134] Lan C, Zhao S, Luo J, Fan P 2018 Phys. Chem. Chem. Phys. 20 24339Google Scholar
[135] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122Google Scholar
[136] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mater. 28 284
[137] Binek A, Hanusch F C, Docampo P, Bein T 2015 J. Phys. Chem. Lett. 6 1249Google Scholar
[138] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693
[139] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M 2016 Phys. Status Solidi-R. 10 583Google Scholar
[140] Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari A N 2013 Nat. Mater. 12 1107Google Scholar
[141] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar
[142] Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028Google Scholar
[143] Liu X, Zhang Y, Shi L, Liu Z, Huang J, Yun J S, Zeng Y, Pu A, Sun K, Hameiri Z, Stride J A, Seidel J, Green M A, Hao X 2018 Adv. Energy Mater. 8 1800138
[144] Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar
[145] Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Solar. Rrl. 2 1800164Google Scholar
[146] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar
[147] Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar
[148] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[149] Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173Google Scholar
[150] Ye T, Bruno A, Han G, Koh T M, Li J, Jamaludin N F, Soci C, Mhaisalkar S G, Leong W L 2018 Adv. Funct. Mater. 28 1801654Google Scholar
[151] Liu G, Zheng H, Xu X X, Zhu L, Alsaedi A, Hayat T, Pan X, Dai S 2018 J. Mater. Chem. A 6 18067Google Scholar
[152] Koh T M, Shanmugam V, Guo X T, Lim S S, Filonik O, Herzig E M, Müller-Buschbaum P, Swamy V, Chien S T, Mhaisalkar S G, Mathews N 2018 J. Mater. Chem. A 6 2122−2128Google Scholar
[153] Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar
[154] Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar
[155] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar
[156] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R 2016 Nat. Photon. 10 699Google Scholar
[157] Shang Q, Wang Y, Zhong Y, Mi Y, Qin L, Zhao Y, Qiu X, Liu X, Zhang Q 2017 J. Phys. Chem. Lett. 8 4431Google Scholar
[158] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar
[159] Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar
[160] Yan J, Qiu W, Wu G, Heremans P, Chen H 2018 J. Mater. Chem. A 6 11063Google Scholar
[161] Zhang X, Munir R, Xu Z, Liu Y, Tsai H, Nie W, Li J, Niu T, Smilgies D M, Kanatzidis M G, Mohite A D, Zhao K, Amassian A, Liu S F 2018 Adv. Mater. 30 e1707166Google Scholar
[162] Liu G, Zheng H, Xu X, Xu S, Zhang X, Pan X, Dai S 2019 Adv. Funct. Mater. 1807565Google Scholar
[163] Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy. Mater. 8 1800051Google Scholar
[164] Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392
[165] Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar
[166] Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z 2018 Joule 2 2732Google Scholar
[167] Peng W, Yin J, Ho K T, Ouellette O, de Bastiani M, Murali B, El Tall O, Shen C, Miao X, Pan J, Alarousu E, He J H, Ooi B S, Mohammed O F, Sargent E, Bakr O M 2017 Nano Lett. 17 4759Google Scholar
[168] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
计量
- 文章访问数: 35363
- PDF下载量: 1513
- 被引次数: 0