搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响

汤卉 唐新桂 蒋艳平 刘秋香 李文华

引用本文:
Citation:

铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响

汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华

Oxygen vacancy effect on ionic conductivity and relaxation phenomenon of SrxBa1–xNb2O6 ceramics

Tang Hui, Tang Xin-Gui, Jiang Yan-Ping, Liu Qiu-Xiang, Li Wen-Hua
PDF
HTML
导出引用
  • 由于铅对环境存在各种危害, 无铅铁电功能陶瓷的研究是当前研究热点之一. 弛豫铁电体因具有较低的容温变化率和大的电致伸缩系数, 在陶瓷电容器材料中占据重要地位. 且无铅功能陶瓷在高温介电行为和阻抗的分析研究工作对功能陶瓷在高温下的适用具有重要的指导意义. SrxBa1–xNb2O6陶瓷采用传统的高温固相反应法制备而成, 并系统地研究了SrxBa1–xNb2O6陶瓷的介温特性和阻抗. 值得注意的是, 铌酸锶钡的高温弛豫尚未研究报导. 结果显示, 锶在陶瓷中组分比例的增加会使铁电相转变为顺电的相变温度降低. 此外, 通过计算, x = 0.6的铌酸锶钡陶瓷的弥散相变参数γ = 1.94, 表明x = 0.6的铌酸锶钡陶瓷在低温下接近理想的弛豫铁电体. 另外, 阻抗分析数据显示陶瓷存在热激活弛豫现象. 最后, 利用阿伦尼乌斯定律从阻抗和介电数据中计算出了电导活化能和弛豫活化能. 计算结果证明, 氧空位引起的离子跳跃在高温介电弛豫过程中发挥了关键作用.
    Due to the various risks caused by lead, the research of lead-free ferroelectric functional ceramics has been one of research hotspots recently. And relaxor ferroelectrics have an important position in materials for ceramic capacitor due to their low temperature change rate and large electrostrictive coefficient. However, the lead-free SrxBa1–xNb2O6 ceramic is a non-filled tungsten bronze structural material whose Curie temperature can be adjusted by changing the proportion of Sr composition. The increase of Sr concentration in ceramic can cause relaxor behavior and improve dielectric constant and ferroelectric properties. In this work, SrxBa1–xNb2O6 (x = 0.4, 0.5 and 0.6, abbreviated as SBN40, SBN50 and SBN60, respectively) ceramics are prepared by a high-temperature solid-state reaction process. The dielectric properties and the impedances of the SrxBa1–xNb2O6 ceramics are investigated in detail. It is worth noting that the high-temperature diffusion for the SrxBa1–xNb2O6 has not been studied before. Furthermore, the analysis of high-temperature dielectric behavior and impedance of lead-free functional ceramics is important for the application of functional ceramics in the high-temperature environment. The temperature of phase transition for SBN40, SBN50 and SBN60 are 401.15 K, 355.15 K, and 327.15 K, respectively, which are obtained from the modified Curie-Weiss law. The result shows that the increase of Sr composition leads the phase transition temperature from ferroelectric to paraelectric phase to decrease. In addition, the calculated value of diffusion phase transition parameter γ for SBN40, SBN50 and SBN60 are 1.53, 1.90 and 1.94, respectively, showing that it is close to an ideal relaxor ferroelectric with the Sr content increasing in SBN ceramics at low temperature. In addition, it is noticed that a similar diffusion appears in at high temperature. This phenomenon is unrelated to the phase transition, but it is corresponding to high temperature dielectric relaxation which is related to oxygen vacancy. As expected, the impedance spectroscopic data present a thermally activated relaxation phenomenon. Finally, activation energy for conduction and relaxation are calculated from the impedance and dielectric data through the Arrhenius law. Comparing the activation energy values for conduction and relaxation, it can be obviously concluded that the trap-controlled conduction process should be responsible for the relaxation process of sample. And the hopping of ions, caused by oxygen vacancies, plays a critical role in the dielectric relaxation process at high temperature.
      通信作者: 唐新桂, xgtang@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574057)和广东省科技计划项目(批准号: 2016 A010104018)资助的课题
      Corresponding author: Tang Xin-Gui, xgtang@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574057) and the Science and Technology Program of Guangdong Province of China (Grant No. 2016A010104018)
    [1]

    Zhang Y, Xie M Y, Roscow J, Bao Y X, Zhou K C, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 6569Google Scholar

    [2]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [3]

    Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar

    [4]

    Yang Q, Shi Z, Ma D, He Y, Wa ng 2018 J. Ceram. Int. 44 14850Google Scholar

    [5]

    Qiao H M, He C, Wang Z J, Li X Z, Liu Y, Long X F 2018 J. Eur. Ceram. Soc. 38 3162Google Scholar

    [6]

    Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar

    [7]

    Luo B C, Wang X H, Tian E K, Qu H M, Zhao Q C, Cai Z M, Wang H X, Feng W, Li B W, Li L T 2018 J. Am. Ceram. Soc. 101 2976Google Scholar

    [8]

    曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军 2016 65 137701Google Scholar

    Gao W Q, Liu P Z, Chen Y, Pan R K, Qi Y J 2016 Acta Phys. Sin. 65 137701Google Scholar

    [9]

    Shvartsman V V, Kleemann W 2008 Phys. Rev. B 77 054105Google Scholar

    [10]

    Zhang J, Wang G S, Gao F, Mao C L, Dong X L 2013 Ceram. Int. 39 1971Google Scholar

    [11]

    Ottini R, Tealdi C, Tomasi C, Tredici I G, Soffientini A, Anselmi-Tamburini U, Ghigna P, Spinolo G 2017 J. Appl. Phys. 121 085104Google Scholar

    [12]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar

    [13]

    Velayutham T, Salim N, Gan W 2016 J. Alloys Compd. 6 334

    [14]

    Chen H, Guo S B, Yao C H, Dong X L, Mao C L, Wang G S 2017 Ceram. Int. 43 3610Google Scholar

    [15]

    Zheng J, Chen G H, Yuan C L, Zhou C R, Chen X, Feng Q, Li M 2016 Ceram. Int. 42 1827Google Scholar

    [16]

    Chen F, Liu Q X, Tang X G, Jiang Y P, Yue J L, Li J K 2016 J. Elec. Mat. 45 3174Google Scholar

    [17]

    Fan H Q, Zhang L Y, Yao X 1998 J. Mater. Sci. 33 895Google Scholar

    [18]

    Viehland D, Wu Z, Huang W H 1995 Philos. Mag. A 71 205Google Scholar

    [19]

    Hennings D, Schnell A, Simon G 1982 J. Am. Ceram. Soc. 65 539Google Scholar

    [20]

    Zhao Y Y, Wang J P, Zhang L X, Shi X J, Liu S J, Zhang D W 2016 Ceram. Int. 42 16697Google Scholar

    [21]

    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M 1994 Phys. Rev. B 49 7868Google Scholar

    [22]

    Cao Z Z, Liu X T, He W Y, Ruan X Z, Gao Y F, Liu J R 2015 Physica B 477 8Google Scholar

    [23]

    Wang X, Lu X, Zhang C, Wu X, Cai W, Peng S, Bo H F, Kan Y, Huang F Z, Zhu J S 2010 J. Appl. Phys. 107 114101Google Scholar

    [24]

    Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Chem. Soc. 98 551

    [25]

    Fang T T, Chung H Y 2009 Appl. Phys. Lett. 94 092905Google Scholar

    [26]

    伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香 2012 61 207702Google Scholar

    Wu J B, Tang X G, Jia Z H, Chen D G, Jiang Y P, Liu Q X 2012 Acta Phys. Sin. 61 207702Google Scholar

    [27]

    Wang M J, Zhang Y, Liu X L, Wang X R 2013 Ceram. Int. 39 2069Google Scholar

    [28]

    Morii K, Kawano H, Fujii I, Matsui T, Nakayama Y 1995 J. Appl. Phys. 78 1914Google Scholar

    [29]

    Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar

    [30]

    Singh G, Tiwari V S, Gupta P K 2010 J. Appl. Phys. 107 064103Google Scholar

    [31]

    Jiang X P, Jiang Y L, Jiang X G, Chen C, Tu N, Chen Y J 2017 Chin. Phys. B 26 077701Google Scholar

  • 图 1  陶瓷在不同频率下的介电常数和介电损耗与温度的关系 (a) SBN40; (b) SBN50; (c) SBN60; (d)所有样品在1 kHz频率下的介电常数和介电损耗与温度的关系

    Fig. 1.  Temperature dependence of dielectric permittivity and dielectric loss for ceramics at different frequencies: (a) SBN40; (b) SBN50; (c) SBN60; (d) all of the samples at 1 kHz.

    图 2  在1 kHz频率下, 介电常数与温度的函数关系(黑色实线是居里-外斯定律拟合, 红色实线是改进的居里-外斯定律的拟合) (a) SBN40; (b) SBN50; (c) SBN60; (d)在1 kHz下三个样品的γ, TmT0的值

    Fig. 2.  The inverse of dielectric permittivity as a function of temperature at 1 kHz (the black solid lines are used to fit the Curie-Weiss law, the red solid lines used to fit the modified Curie-Weiss law): (a) SBN40; (b) SBN50; (c) SBN60; (d) the value of γ, Tm and T0 for three samples at 1 kHz.

    图 3  SBN陶瓷的Cole-Cole图(插图为阻抗虚部归一化 (Z''/Z''max)随频率的变化关系图) (a) SBN40; (b) SBN50; (c) SBN60; (d)在843 K下所有SBN陶瓷的Cole-Cole图

    Fig. 3.  Cole-Cole plots for SBN ceramics (the insets show the normalized imaginary parts of impedance (Z''/Z''max) with frequency): (a) SBN40; (b) SBN50; (c) SBN60; (d) Cole-Cole plots for SBN ceramics at 843 K.

    图 4  (a) ln(ω) 和(b)ln(σ)对比具有各种Sr2+浓度的SBN陶瓷的1000/T曲线, 直线用于符合阿伦尼乌斯定律

    Fig. 4.  (a) ln(ω) and (b) ln(σ) versus 1000/T curves for SBN ceramic with various Sr2+ concentrations. The straight lines were used to fit the Arrhenius law.

    Baidu
  • [1]

    Zhang Y, Xie M Y, Roscow J, Bao Y X, Zhou K C, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 6569Google Scholar

    [2]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [3]

    Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar

    [4]

    Yang Q, Shi Z, Ma D, He Y, Wa ng 2018 J. Ceram. Int. 44 14850Google Scholar

    [5]

    Qiao H M, He C, Wang Z J, Li X Z, Liu Y, Long X F 2018 J. Eur. Ceram. Soc. 38 3162Google Scholar

    [6]

    Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar

    [7]

    Luo B C, Wang X H, Tian E K, Qu H M, Zhao Q C, Cai Z M, Wang H X, Feng W, Li B W, Li L T 2018 J. Am. Ceram. Soc. 101 2976Google Scholar

    [8]

    曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军 2016 65 137701Google Scholar

    Gao W Q, Liu P Z, Chen Y, Pan R K, Qi Y J 2016 Acta Phys. Sin. 65 137701Google Scholar

    [9]

    Shvartsman V V, Kleemann W 2008 Phys. Rev. B 77 054105Google Scholar

    [10]

    Zhang J, Wang G S, Gao F, Mao C L, Dong X L 2013 Ceram. Int. 39 1971Google Scholar

    [11]

    Ottini R, Tealdi C, Tomasi C, Tredici I G, Soffientini A, Anselmi-Tamburini U, Ghigna P, Spinolo G 2017 J. Appl. Phys. 121 085104Google Scholar

    [12]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar

    [13]

    Velayutham T, Salim N, Gan W 2016 J. Alloys Compd. 6 334

    [14]

    Chen H, Guo S B, Yao C H, Dong X L, Mao C L, Wang G S 2017 Ceram. Int. 43 3610Google Scholar

    [15]

    Zheng J, Chen G H, Yuan C L, Zhou C R, Chen X, Feng Q, Li M 2016 Ceram. Int. 42 1827Google Scholar

    [16]

    Chen F, Liu Q X, Tang X G, Jiang Y P, Yue J L, Li J K 2016 J. Elec. Mat. 45 3174Google Scholar

    [17]

    Fan H Q, Zhang L Y, Yao X 1998 J. Mater. Sci. 33 895Google Scholar

    [18]

    Viehland D, Wu Z, Huang W H 1995 Philos. Mag. A 71 205Google Scholar

    [19]

    Hennings D, Schnell A, Simon G 1982 J. Am. Ceram. Soc. 65 539Google Scholar

    [20]

    Zhao Y Y, Wang J P, Zhang L X, Shi X J, Liu S J, Zhang D W 2016 Ceram. Int. 42 16697Google Scholar

    [21]

    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M 1994 Phys. Rev. B 49 7868Google Scholar

    [22]

    Cao Z Z, Liu X T, He W Y, Ruan X Z, Gao Y F, Liu J R 2015 Physica B 477 8Google Scholar

    [23]

    Wang X, Lu X, Zhang C, Wu X, Cai W, Peng S, Bo H F, Kan Y, Huang F Z, Zhu J S 2010 J. Appl. Phys. 107 114101Google Scholar

    [24]

    Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Chem. Soc. 98 551

    [25]

    Fang T T, Chung H Y 2009 Appl. Phys. Lett. 94 092905Google Scholar

    [26]

    伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香 2012 61 207702Google Scholar

    Wu J B, Tang X G, Jia Z H, Chen D G, Jiang Y P, Liu Q X 2012 Acta Phys. Sin. 61 207702Google Scholar

    [27]

    Wang M J, Zhang Y, Liu X L, Wang X R 2013 Ceram. Int. 39 2069Google Scholar

    [28]

    Morii K, Kawano H, Fujii I, Matsui T, Nakayama Y 1995 J. Appl. Phys. 78 1914Google Scholar

    [29]

    Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar

    [30]

    Singh G, Tiwari V S, Gupta P K 2010 J. Appl. Phys. 107 064103Google Scholar

    [31]

    Jiang X P, Jiang Y L, Jiang X G, Chen C, Tu N, Chen Y J 2017 Chin. Phys. B 26 077701Google Scholar

  • [1] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [2] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成.  , 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [3] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [4] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型.  , 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [5] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率.  , 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [6] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展.  , 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [7] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究.  , 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [8] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [9] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布.  , 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [11] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [12] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [13] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响.  , 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [14] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究.  , 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [15] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [16] 高成勇, 夏海瑞, 徐建强, 司书春, 张怀金, 王继杨, 宋化龙. Ca2+掺杂铌酸锶钡晶体的光折射变化特性研究.  , 2007, 56(8): 4648-4652. doi: 10.7498/aps.56.4648
    [17] 周 静, 赵 然, 陈 文. xPMnS-(1-x)PZN陶瓷的相变特性研究.  , 2006, 55(6): 2815-2819. doi: 10.7498/aps.55.2815
    [18] 李宝山, 朱志刚, 李国荣, 殷庆瑞, 丁爱丽. 铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应.  , 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
    [19] 曹晓燕, 叶 辉, 邓年辉, 郭 冰, 顾培夫. 高择优取向硅基含钾铌酸锶钡(K:SBN)薄膜的制备与性能.  , 2004, 53(7): 2363-2367. doi: 10.7498/aps.53.2363
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究.  , 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  10333
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-08-16
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map