搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基光电子器件的辐射效应研究进展

周悦 胡志远 毕大炜 武爱民

引用本文:
Citation:

硅基光电子器件的辐射效应研究进展

周悦, 胡志远, 毕大炜, 武爱民

Progress of radiation effects of silicon photonics devices

Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min
PDF
HTML
导出引用
  • 硅基光电子器件与芯片技术是通信领域的下一代关键技术, 在光通信、高性能计算、数据中心等领域有广阔的市场, 在生物传感领域也有广泛应用. 根据硅光器件高集成度、重量小等特性, 可以预见硅基光电子芯片在空间通信、核电站、高能粒子实验等辐射环境中也极具应用前景. 本文综述了硅基光电子器件在高能粒子环境下的辐射效应研究工作, 阐述了电离和非电离辐射效应; 针对无源器件和有源器件分别介绍了辐射效应和响应机理, 包括波导、环形谐振器、调制器、探测器、激光器、光纤等. 高能辐射对无源器件的影响主要包括结构加速氧化、晶格缺陷、非晶结构致密化等. 对于光电探测器和激光器, 辐射引起的位移损伤占主导地位, 其中点缺陷引入的深能级会影响载流子响应导致器件性能变化, 而电光调制器在辐射环境下的主要损伤机制是电离损伤, 产生的缺陷电荷会影响载流子浓度从而改变有效折射率. 本文最后展望了硅基光电集成器件的辐射加固思路和在空间环境中的应用前景.
    Silicon photonics is a fundamental technology, which has great potential applications in optical interconnection for telecom, datacom, and high performance computers, as well as in bio-photonics. Currently considered are the photonics integrated circuits that are able to work in harsh environments such as high energy equipment and future space systems including satellites, space stations and spacecraft. The understanding of the radiation effects of the photonics devices is critical for fabricating radiation hardened photonic integrate chips and maintaining the performance of the devices and the systems. In this paper, the recent progress of the radiation effects of silicon photonic components is summarized. The effects of the high energy particles that possibly degrade the performance of the device are explained, and the response of the passive and active device under radiation are reviewed comprehensively, including waveguides, ring resonators, modulators, detectors, lasers and optical fibers and so on. For passive devices, radiation-induced effects include accelerated-oxidation of the structures, radiation-generated lattice defects, and amorphous densification or compaction in the optical materials. The effective refractive index of the passive device may change consequently, leading the working frequency to shift, the optical confinement to decrease, and the optical power to leak, which accounts for the extra loss or other performance degradation behaviors. For photodetectors and lasers, radiation-induced displacement damage will be dominant. The induced point defects localized in the silicon layer bring about deep level in the forbidden band, acting as generation-recombination centers or trap centers of tunneling effect, which will compensate for either donor or acceptor levels, degrading the response of these optoelectronic device significantly. The plasma dispersion effect is the mainstream approach to building the silicon electro-optic modulators, which will suffer ionization damage in the high energy particle environment, because the interface-trapped hole caused by ionizing radiation reduces the carrier concentration in the depletion region and even induces the pinch-off of the p-doped side of the modulator, which may result in device failure. To improve the radiation hardness of the silicon photonic device, the passivation of the surface, optimization of the waveguide shape, and the choice of appropriate thickness of the buried oxide layer are possible solutions, and more effective approaches are still to be developed.
      通信作者: 武爱民, wuaimin@mail.sim.ac.cn
    • 基金项目: 国家科技重大专项02专项 (批准号: 2017ZX02315004-002-003) 和科技部重点研发计划 (批准号: 2016YFE0130000)资助的课题
      Corresponding author: Wu Ai-Min, wuaimin@mail.sim.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Frant No. 2017ZX02315004-002-003) and the Major Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2016YFE0130000)
    [1]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 45 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. China: Phys. Mech. Astron. 45 15

    [2]

    Dai L H, Bi D W, Zhang Z X, Xie X, Hu Z Y, Huang H X, Zou S C 2018 Chin. Phys. Lett. 35 056101Google Scholar

    [3]

    Dai L H, Bi D W, Hu Z Y, Liu X N, Zhang M Y, Zhang Z X, Zou S C 2018 Chin. Phys. B 27 048503Google Scholar

    [4]

    张正选, 邹世昌 2017 科学通报 62 1004

    Zhang Z X, Zou S C 2017 Chin. Sci. Bull. 62 1004

    [5]

    Johnston A H 2000 the 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application Tsukuba, Japan, October 11–13, 2000 p1

    [6]

    Johnston A H 2013 IEEE Trans. Nucl. Sci. 60 2054Google Scholar

    [7]

    Seif El Nasr-Storey S, Detraz S, Olantera L, Sigaud C, Soos C, Troska J, Vasey F 2013 Topical Workshop on Electronics for Particle Physics Perugia, Italy, September 23–27, 2013 pC12040

    [8]

    Henschel H, Kohn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432Google Scholar

    [9]

    Sporea D, Agnello S, Gelardi F M https://www.intechopen.com/books/frontiers-in-guided-wave-optics-and-optoelectronics/irradiation-effects-in-optical-fibers [2019-3-7]

    [10]

    Sporea D, Sporea A http://www.intechopen.com/embed/radiation-effects-in-materials/radiation-effects-in-optical-materials-and-photonic-devices [2019-3-7]

    [11]

    Girard S, Baggio J, Bisutti J 2006 IEEE Trans. Nucl. Sci. 53 3750Google Scholar

    [12]

    Uffelen V M, Girard S, Goutaland F, Gusarov A, Brichard B, Berghmans F 2004 IEEE Trans. Nucl. Sci. 51 2763Google Scholar

    [13]

    Wyllie K, Baron S, Bonacini S, Çobanoğlu Ö, Faccio F, Feger S, Francisco R, Gui P, Li J, Marchioro A, Moreira P, Paillard C, Porreta D 2012 Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics Chicago, IL, USA, Jun 9–14, 2011 p1561

    [14]

    Xiang A, Gong D, Hou S, Huffman T, Kwan S, Liu K, Liu T, Prosser A, Soos C, Su D, Teng P, Troska J, Vasey F, Weidberg T, Ye J 2012 Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics Chicago, IL, USA, Jun 9–14, 2011 p1750

    [15]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 080001

    Song J M, Guo J H, Wang X Q, Hu S L 2012 Laser &Optoelectronics Progress 49 080001

    [16]

    Berghmans F, Brichard B, Fernandez A F, Gusarov A, Uffelen M V, Girard S 2008 An Introduction to Radiation Effects on Optical Components and Fiber Optic Sensors (Dordrecht: Springer Netherlands) pp127–165

    [17]

    沈自才, 丁义刚 2015 抗辐射设计与辐射效应 (北京: 中国科学技术出版社) 第85页

    Shen Z C, Ding Y G 2015 Radiation Protection Design and Radiation Effect (Beijing: China Science And Technology Press) p85 (in Chinese)

    [18]

    Lai C C, Chang C Y, Wei Y Y, Wang W S 2007 IEEE Photonics Technol. Lett. 19 1002Google Scholar

    [19]

    Lai C C, Wei T Y, Chang C Y, Wang W S, Wei Y Y 2008 Appl. Phys. Lett. 92 23303Google Scholar

    [20]

    Del’Haye P, Schliesser1 A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature Lett. 450 1214Google Scholar

    [21]

    任光辉, 陈少武, 曹彤彤 2012 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [22]

    曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武 2013 62 194210Google Scholar

    Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W 2013 Acta Phys. Sin. 62 194210Google Scholar

    [23]

    Dumon P, Baets R, Kappeler R, Barros D, McKenzie I, Doyle D 2005 Proc. SPIE 5897, Photonics for Space Environments X (San Diego, California, United States: Optics and Photonics) p1

    [24]

    Bhandaru S, Hu S, Fleetwood M D, Weiss M S 2015 IEEE Trans. Nucl. Sci. 62 323Google Scholar

    [25]

    Du Q Y, Huang Y Z, Ogbuu O, Zhang W, Li J Y, Singh V, Agarwal M A, Hu J J 2017 Opt. Lett. 42 587Google Scholar

    [26]

    Ahmed Z, Cumberland T L, Klimov N N, Pazos M I, Tosh E R, Fitzgerald R 2018 Sci. Rep. 8 13007Google Scholar

    [27]

    Brasch V, Chen Q F, Schiller S, et al. 2014 Opt. Express 25 30786

    [28]

    Grillanda S, Singh V, Raghunathan V, Morichetti F, Melloni A, Kimerling L, Agarwal M A 2016 Opt. Lett. 41 3053Google Scholar

    [29]

    Morichetti F, Grillanda S, Manandhar S, Shutthanandan V, Kimerling L, Melloni A, Agarwal M A 2016 ACS Photonics 3 1569Google Scholar

    [30]

    吴金东, 黄舒, 胡海鑫, 丁纲筋, 肖湘杰 2014 汉斯 4 34

    Wu J D, Huang S, Hu H X, Ding G J, Xiao X J 2014 Hans 4 34

    [31]

    Ryckman D J, Reed A R, Weller A R, Fleetwood M D, Weiss M S 2010 J. Appl. Phys. 108 113528Google Scholar

    [32]

    Piao F, Oldham G W, Haller E E 2000 J. Non-Cryst. Solids 276 61Google Scholar

    [33]

    Leick L, Zenth K, Laurent L C, Koster T, Andersen UA L, Wang L, Larsen H B, Nielsen P L, Mattsson E K 2004 Optical Fiber Communication Conference Los Angeles, USA, February 23–27, 2004 p40

    [34]

    Worhoff K, Lambeck P V, Driessen A 1999 J. Lightwave Technol. 17 1401Google Scholar

    [35]

    沈浩, 李东升, 杨德仁 2015 64 204208Google Scholar

    Shen H, Li D S, Yang D R 2015 Acta Phys. Sin. 64 204208Google Scholar

    [36]

    王智琪 2014 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Wang Z Q 2014 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [37]

    仇超 2013 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Qiu C 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [38]

    Nikolić, D, Vasic A, Fetahovic I, Stanković K, Osmokrović P 2011 Ser. A: Appl. Math. Inform. Mech. 3 27

    [39]

    Kumar M V, Kumar S, Cheng C, Asokan K, Kumar A, Shobha V, Karanth P S, Krishnaveni S 2017 ECS J. Solid State Sci. Technol. 6 Q132Google Scholar

    [40]

    Zeiler M, Seif El Nasr-Storey S, Detraz S, Kraxner A, Olantera L, Scarcella C, Sigaud C, Soos C, Troska J, Vasey F 2017 IEEE Trans. Nucl. Sci. 64 2794Google Scholar

    [41]

    Hoffman G B, Gehl B, Martinez N J, Trotter D C, Starbuck A L, Pomerene A, Dallo C M, Hood D, Dodd P E, Swanson S E, Long C M, DeRose C T, Lentine A L 2019 IEEE Trans. Nucl. Sci. 66 801Google Scholar

    [42]

    Detection Technology, Inc. http://www.deetee.com [2019-3-7]

    [43]

    Troska J, Detraz S, Seif El Nasr-Storey S, Stejskal P, Sigaud C, Soos C, Vasey F 2011 IEEE Trans. Nucl. Sci. 58 3103Google Scholar

    [44]

    Blansett L E, Serkland, K D, Cich J M, Geib M K, Peake M G, Fleming M R, Wrobel L D, Wrobel F T 2008 Sandia Report (Springfield: U.S. Department of Commerce) p1

    [45]

    Gill K, Axer M, Dris S, Grabit R, Macias R, Noah R, Troska J, Vasey F 2005 IEEE Trans. Nucl. Sci. 52 1480Google Scholar

    [46]

    汪敬 2015 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Wang J 2015 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [47]

    Zeiler M 2017 Ph. D. Dissertation (Dublin: Dublin City University

    [48]

    Seif El Nasr-Storey S, Détraz S, Olanterä L, Sigaud C, Soos C, Pezzullo G, Troska J, Vasey F, Zeiler M 2015 J. Instrum. 10 C3040

    [49]

    Seif El Nasr-Storey S, Boeuf F, Baudot C, Detraz S, Fedeli M J, Marris-Morini D, Olantera L, Pezzullo G, Sigaud C, Soos C, Troska J, Vasey F, Vivien L, Zeiler M, Ziebell M 2015 IEEE Trans. Nucl. Sci. 62 329Google Scholar

    [50]

    Seif El Nasr-Storey S, Boeuf F, Baudot C, Detraz S, Fedeli M J, Marris-Morini D, Olantera L, Pezzullo G, Sigaud C, Soos C, Troska J, Vasey F, Vivien L, Zeiler M, Ziebell M 2015 IEEE Trans. Nucl. Sci. 62 2971Google Scholar

    [51]

    Zeiler M, Detraz S, Olantera L, Pezzullo G, Seif El Nasr-Storey S, Sigaud C, Soos C, Troska J, Vasey F 2016 J. Instrum. 11 C1040

    [52]

    Zeiler M, Detraz S, Olantera L, Nasr-Storey E S S, Sigaud C, Soos C, Troska J, Vasey F 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) Bremen, Germany, September 9–13, 2016 p1

    [53]

    Zeiler M, Detraz S, Olantera L, Sigaud C, Soos C, Troska J, Vasey F 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) Strasbourg, France, October 29–November 6, 2016 p1

    [54]

    Kraxner A, Detraz S, Olantera L, Scarcella C, Sigaud C, Soos C, Troska J, Vasey F 2018 IEEE Trans. Nucl. Sci. 65 1624XGoogle Scholar

    [55]

    Barnes, Charles 1970 Phys. Rev. B 12 4735

    [56]

    Ohyama H, Hirao T, Simoen E, Claeys C, Onoda S, Takami Y, Itoh H 2001 Physica B 308 1185

    [57]

    Phifer C C 2004 Sandia Report (Springfield: U.S. Department of Commerce) p1

    [58]

    Aukerman L W, Song Y, Vernon F L J 1982 Laser & Laser Systems Reliability. International Society for Optics and Photonics Los Angeles, CA, January 28–29, 1982 p56

    [59]

    Liscka H, Henschel H, Köhn O, Lennartz W, Metzger S, Schmidt H U 1995 European Conference on Radiation & Its Effects on Components & Systems Arcachon, France, September 18–22, 1995 p560

    [60]

    Johnston A H 2003 IEEE Trans. Nucl. Sci. 50 689Google Scholar

    [61]

    Johnston H A, Rax G B, Selva E L, Barneset E C 1999 IEEE Trans. Nucl. Sci. 46 1781Google Scholar

    [62]

    Reed A R, Marshall W P, Marshall J C, Ladbury L R, Kim S K, Nguyen X L, Barth L J, LaBel A K 2000 IEEE Trans. Nucl. Sci. 47 2492Google Scholar

    [63]

    Stejskal P, Détraz S, Papadopoulos S, Papakonstantinou I, Sigaud C, Soos C, Storey S, Troska J, Vaseya F 2010 J. Instrum. 5 C12033Google Scholar

    [64]

    Cheremisin I I, Ermolenko A T, Evlampiev K I, Popov A S, Turoverov K P, Golant M K, Zabezhajlov O M 2004 Plasma Devices Oper. 12 1Google Scholar

    [65]

    Tian H, Zhang Z X, He W, Yu W J, Wang R, Cheng M 2008 Chin. Phys. C 32 645Google Scholar

    [66]

    杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞 2018 67 168501Google Scholar

    Yang J Q, Dong L, Liu C M, Li X J, Xu P F 2018 Acta Phys. Sin. 67 168501Google Scholar

  • 图 1  光子能量和原子序数与三种效应的关系

    Fig. 1.  Relationships between photon energy, atomic number and three effects.

    图 2  硅光系统的信息传输过程

    Fig. 2.  Information transmission process of silicon optical system.

    图 3  微环谐振器的结构示意图

    Fig. 3.  Schematic diagram of micro ring resonator.

    图 4  有效折射率与γ射线的累积剂量的关系 (a) a-Si谐振器; (b) SiNx谐振器[25]

    Fig. 4.  Dependences of effective index changes on cumulative gamma radiation dose in (a) a-Si reso nators and (b) SiNx devices, inferred from optical resonator measurements[25].

    图 5  MZM的示意图[47]

    Fig. 5.  Schematic diagram of MZM[47].

    Baidu
  • [1]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 45 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. China: Phys. Mech. Astron. 45 15

    [2]

    Dai L H, Bi D W, Zhang Z X, Xie X, Hu Z Y, Huang H X, Zou S C 2018 Chin. Phys. Lett. 35 056101Google Scholar

    [3]

    Dai L H, Bi D W, Hu Z Y, Liu X N, Zhang M Y, Zhang Z X, Zou S C 2018 Chin. Phys. B 27 048503Google Scholar

    [4]

    张正选, 邹世昌 2017 科学通报 62 1004

    Zhang Z X, Zou S C 2017 Chin. Sci. Bull. 62 1004

    [5]

    Johnston A H 2000 the 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application Tsukuba, Japan, October 11–13, 2000 p1

    [6]

    Johnston A H 2013 IEEE Trans. Nucl. Sci. 60 2054Google Scholar

    [7]

    Seif El Nasr-Storey S, Detraz S, Olantera L, Sigaud C, Soos C, Troska J, Vasey F 2013 Topical Workshop on Electronics for Particle Physics Perugia, Italy, September 23–27, 2013 pC12040

    [8]

    Henschel H, Kohn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432Google Scholar

    [9]

    Sporea D, Agnello S, Gelardi F M https://www.intechopen.com/books/frontiers-in-guided-wave-optics-and-optoelectronics/irradiation-effects-in-optical-fibers [2019-3-7]

    [10]

    Sporea D, Sporea A http://www.intechopen.com/embed/radiation-effects-in-materials/radiation-effects-in-optical-materials-and-photonic-devices [2019-3-7]

    [11]

    Girard S, Baggio J, Bisutti J 2006 IEEE Trans. Nucl. Sci. 53 3750Google Scholar

    [12]

    Uffelen V M, Girard S, Goutaland F, Gusarov A, Brichard B, Berghmans F 2004 IEEE Trans. Nucl. Sci. 51 2763Google Scholar

    [13]

    Wyllie K, Baron S, Bonacini S, Çobanoğlu Ö, Faccio F, Feger S, Francisco R, Gui P, Li J, Marchioro A, Moreira P, Paillard C, Porreta D 2012 Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics Chicago, IL, USA, Jun 9–14, 2011 p1561

    [14]

    Xiang A, Gong D, Hou S, Huffman T, Kwan S, Liu K, Liu T, Prosser A, Soos C, Su D, Teng P, Troska J, Vasey F, Weidberg T, Ye J 2012 Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics Chicago, IL, USA, Jun 9–14, 2011 p1750

    [15]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 080001

    Song J M, Guo J H, Wang X Q, Hu S L 2012 Laser &Optoelectronics Progress 49 080001

    [16]

    Berghmans F, Brichard B, Fernandez A F, Gusarov A, Uffelen M V, Girard S 2008 An Introduction to Radiation Effects on Optical Components and Fiber Optic Sensors (Dordrecht: Springer Netherlands) pp127–165

    [17]

    沈自才, 丁义刚 2015 抗辐射设计与辐射效应 (北京: 中国科学技术出版社) 第85页

    Shen Z C, Ding Y G 2015 Radiation Protection Design and Radiation Effect (Beijing: China Science And Technology Press) p85 (in Chinese)

    [18]

    Lai C C, Chang C Y, Wei Y Y, Wang W S 2007 IEEE Photonics Technol. Lett. 19 1002Google Scholar

    [19]

    Lai C C, Wei T Y, Chang C Y, Wang W S, Wei Y Y 2008 Appl. Phys. Lett. 92 23303Google Scholar

    [20]

    Del’Haye P, Schliesser1 A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature Lett. 450 1214Google Scholar

    [21]

    任光辉, 陈少武, 曹彤彤 2012 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [22]

    曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武 2013 62 194210Google Scholar

    Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W 2013 Acta Phys. Sin. 62 194210Google Scholar

    [23]

    Dumon P, Baets R, Kappeler R, Barros D, McKenzie I, Doyle D 2005 Proc. SPIE 5897, Photonics for Space Environments X (San Diego, California, United States: Optics and Photonics) p1

    [24]

    Bhandaru S, Hu S, Fleetwood M D, Weiss M S 2015 IEEE Trans. Nucl. Sci. 62 323Google Scholar

    [25]

    Du Q Y, Huang Y Z, Ogbuu O, Zhang W, Li J Y, Singh V, Agarwal M A, Hu J J 2017 Opt. Lett. 42 587Google Scholar

    [26]

    Ahmed Z, Cumberland T L, Klimov N N, Pazos M I, Tosh E R, Fitzgerald R 2018 Sci. Rep. 8 13007Google Scholar

    [27]

    Brasch V, Chen Q F, Schiller S, et al. 2014 Opt. Express 25 30786

    [28]

    Grillanda S, Singh V, Raghunathan V, Morichetti F, Melloni A, Kimerling L, Agarwal M A 2016 Opt. Lett. 41 3053Google Scholar

    [29]

    Morichetti F, Grillanda S, Manandhar S, Shutthanandan V, Kimerling L, Melloni A, Agarwal M A 2016 ACS Photonics 3 1569Google Scholar

    [30]

    吴金东, 黄舒, 胡海鑫, 丁纲筋, 肖湘杰 2014 汉斯 4 34

    Wu J D, Huang S, Hu H X, Ding G J, Xiao X J 2014 Hans 4 34

    [31]

    Ryckman D J, Reed A R, Weller A R, Fleetwood M D, Weiss M S 2010 J. Appl. Phys. 108 113528Google Scholar

    [32]

    Piao F, Oldham G W, Haller E E 2000 J. Non-Cryst. Solids 276 61Google Scholar

    [33]

    Leick L, Zenth K, Laurent L C, Koster T, Andersen UA L, Wang L, Larsen H B, Nielsen P L, Mattsson E K 2004 Optical Fiber Communication Conference Los Angeles, USA, February 23–27, 2004 p40

    [34]

    Worhoff K, Lambeck P V, Driessen A 1999 J. Lightwave Technol. 17 1401Google Scholar

    [35]

    沈浩, 李东升, 杨德仁 2015 64 204208Google Scholar

    Shen H, Li D S, Yang D R 2015 Acta Phys. Sin. 64 204208Google Scholar

    [36]

    王智琪 2014 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Wang Z Q 2014 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [37]

    仇超 2013 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Qiu C 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [38]

    Nikolić, D, Vasic A, Fetahovic I, Stanković K, Osmokrović P 2011 Ser. A: Appl. Math. Inform. Mech. 3 27

    [39]

    Kumar M V, Kumar S, Cheng C, Asokan K, Kumar A, Shobha V, Karanth P S, Krishnaveni S 2017 ECS J. Solid State Sci. Technol. 6 Q132Google Scholar

    [40]

    Zeiler M, Seif El Nasr-Storey S, Detraz S, Kraxner A, Olantera L, Scarcella C, Sigaud C, Soos C, Troska J, Vasey F 2017 IEEE Trans. Nucl. Sci. 64 2794Google Scholar

    [41]

    Hoffman G B, Gehl B, Martinez N J, Trotter D C, Starbuck A L, Pomerene A, Dallo C M, Hood D, Dodd P E, Swanson S E, Long C M, DeRose C T, Lentine A L 2019 IEEE Trans. Nucl. Sci. 66 801Google Scholar

    [42]

    Detection Technology, Inc. http://www.deetee.com [2019-3-7]

    [43]

    Troska J, Detraz S, Seif El Nasr-Storey S, Stejskal P, Sigaud C, Soos C, Vasey F 2011 IEEE Trans. Nucl. Sci. 58 3103Google Scholar

    [44]

    Blansett L E, Serkland, K D, Cich J M, Geib M K, Peake M G, Fleming M R, Wrobel L D, Wrobel F T 2008 Sandia Report (Springfield: U.S. Department of Commerce) p1

    [45]

    Gill K, Axer M, Dris S, Grabit R, Macias R, Noah R, Troska J, Vasey F 2005 IEEE Trans. Nucl. Sci. 52 1480Google Scholar

    [46]

    汪敬 2015 博士学位论文 (上海: 中国科学院大学上海微系统与信息技术研究所)

    Wang J 2015 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, University of Chinese Academy of Sciences) (in Chinese)

    [47]

    Zeiler M 2017 Ph. D. Dissertation (Dublin: Dublin City University

    [48]

    Seif El Nasr-Storey S, Détraz S, Olanterä L, Sigaud C, Soos C, Pezzullo G, Troska J, Vasey F, Zeiler M 2015 J. Instrum. 10 C3040

    [49]

    Seif El Nasr-Storey S, Boeuf F, Baudot C, Detraz S, Fedeli M J, Marris-Morini D, Olantera L, Pezzullo G, Sigaud C, Soos C, Troska J, Vasey F, Vivien L, Zeiler M, Ziebell M 2015 IEEE Trans. Nucl. Sci. 62 329Google Scholar

    [50]

    Seif El Nasr-Storey S, Boeuf F, Baudot C, Detraz S, Fedeli M J, Marris-Morini D, Olantera L, Pezzullo G, Sigaud C, Soos C, Troska J, Vasey F, Vivien L, Zeiler M, Ziebell M 2015 IEEE Trans. Nucl. Sci. 62 2971Google Scholar

    [51]

    Zeiler M, Detraz S, Olantera L, Pezzullo G, Seif El Nasr-Storey S, Sigaud C, Soos C, Troska J, Vasey F 2016 J. Instrum. 11 C1040

    [52]

    Zeiler M, Detraz S, Olantera L, Nasr-Storey E S S, Sigaud C, Soos C, Troska J, Vasey F 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) Bremen, Germany, September 9–13, 2016 p1

    [53]

    Zeiler M, Detraz S, Olantera L, Sigaud C, Soos C, Troska J, Vasey F 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) Strasbourg, France, October 29–November 6, 2016 p1

    [54]

    Kraxner A, Detraz S, Olantera L, Scarcella C, Sigaud C, Soos C, Troska J, Vasey F 2018 IEEE Trans. Nucl. Sci. 65 1624XGoogle Scholar

    [55]

    Barnes, Charles 1970 Phys. Rev. B 12 4735

    [56]

    Ohyama H, Hirao T, Simoen E, Claeys C, Onoda S, Takami Y, Itoh H 2001 Physica B 308 1185

    [57]

    Phifer C C 2004 Sandia Report (Springfield: U.S. Department of Commerce) p1

    [58]

    Aukerman L W, Song Y, Vernon F L J 1982 Laser & Laser Systems Reliability. International Society for Optics and Photonics Los Angeles, CA, January 28–29, 1982 p56

    [59]

    Liscka H, Henschel H, Köhn O, Lennartz W, Metzger S, Schmidt H U 1995 European Conference on Radiation & Its Effects on Components & Systems Arcachon, France, September 18–22, 1995 p560

    [60]

    Johnston A H 2003 IEEE Trans. Nucl. Sci. 50 689Google Scholar

    [61]

    Johnston H A, Rax G B, Selva E L, Barneset E C 1999 IEEE Trans. Nucl. Sci. 46 1781Google Scholar

    [62]

    Reed A R, Marshall W P, Marshall J C, Ladbury L R, Kim S K, Nguyen X L, Barth L J, LaBel A K 2000 IEEE Trans. Nucl. Sci. 47 2492Google Scholar

    [63]

    Stejskal P, Détraz S, Papadopoulos S, Papakonstantinou I, Sigaud C, Soos C, Storey S, Troska J, Vaseya F 2010 J. Instrum. 5 C12033Google Scholar

    [64]

    Cheremisin I I, Ermolenko A T, Evlampiev K I, Popov A S, Turoverov K P, Golant M K, Zabezhajlov O M 2004 Plasma Devices Oper. 12 1Google Scholar

    [65]

    Tian H, Zhang Z X, He W, Yu W J, Wang R, Cheng M 2008 Chin. Phys. C 32 645Google Scholar

    [66]

    杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞 2018 67 168501Google Scholar

    Yang J Q, Dong L, Liu C M, Li X J, Xu P F 2018 Acta Phys. Sin. 67 168501Google Scholar

  • [1] 孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平. 超紧凑硅基混合表面等离激元光场窄化器件的实验研究.  , 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [2] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析.  , 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [3] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理.  , 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [4] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应.  , 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [5] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙. 电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性.  , 2015, 64(13): 136103. doi: 10.7498/aps.64.136103
    [6] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型.  , 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [7] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响.  , 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [8] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究.  , 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [9] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究.  , 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [10] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响.  , 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [11] 范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究.  , 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [12] 高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超. 国产星用VDMOS器件总剂量辐射损伤效应研究.  , 2012, 61(17): 176107. doi: 10.7498/aps.61.176107
    [13] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征.  , 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [14] 翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平. 抗辐射双极n-p-n晶体管的研究.  , 2011, 60(8): 088501. doi: 10.7498/aps.60.088501
    [15] 何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军. 超深亚微米器件总剂量辐射效应三维数值模拟.  , 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [16] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究.  , 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [17] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究.  , 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [18] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [19] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较.  , 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] 王剑屏, 徐娜军, 张廷庆, 汤华莲, 刘家璐, 刘传洋, 姚育娟, 彭宏论, 何宝平, 张正选. 金属-氧化物-半导体器件γ辐照温度效应.  , 2000, 49(7): 1331-1334. doi: 10.7498/aps.49.1331
计量
  • 文章访问数:  12345
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 修回日期:  2019-06-19
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map