-
采用多组态鞍点变分方法计算了类硼S离子K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) 的非相对论能量和波函数, 利用截断变分方法饱和波函数空间, 改进体系的非相对论能量. 利用微扰理论计算了相对论修正和质量极化效应, 利用屏蔽的类氢公式计算了QED (quantum electrodynamics) 效应和高阶相对论修正. 进一步, 考虑闭通道和开通道相互作用, 计算了由俄歇共振效应引起的能级移动, 从而得到了共振态的精确相对论能级. 利用优化的波函数, 计算了类硼S离子K壳层激发共振态的电偶极辐射跃迁的线强度、振子强度、跃迁率和跃迁波长. 计算的振子强度和辐射跃迁率均给出了长度规范、速度规范、加速度规范的结果. 三种规范结果的一致性表明了本文计算的波函数是足够精确的. 利用鞍点复数转动方法计算了类硼S离子K壳层激发共振态的俄歇跃迁率、俄歇分支率和俄歇电子能量. 本文的计算结果与其他文献数据符合较好.
Non-relativistic energy values and wave functions of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) in boron-like sulfur ion are calculated in the frame of multi-configuration saddle-point variation method. The electron correlation effects are considered by the expansion of configuration wave function. The wave functions are constructed and optimized by the orbital-spin angular momentum partial waves selected based on the rule of configuration interaction. To saturate the wave functional space and to improve the non-relativistic energy, the restricted variational method is used to calculate the restricted variational energy. Then, the mass polarization effect and relativistic correction are calculated by the perturbation theory. The quantum electrodynamics (QED) effect and higher-order relativistic correction are considered by the screened hydrogenic formula. Furthermore, the energy shift originating from the interaction between closed channel and open channel is also calculated. Finally, the accurate relativistic energy levels for these resonance states are obtained by adding the non-relativistic energy and all corrections. Using the optimized wave functions, the line strengths, oscillator strengths, radiative transition rates and transition wavelengths of electric-dipole transitions for the K-shell excited resonance states in boron-like sulfur ion are systematically calculated. In this work, the oscillator strengths and transition rates are given in the length, velocity, and acceleration gauges. The good agreement among the three gauges reflects that the calculated wave functions are reasonably accurate. The calculated radiative transition rates and transition wavelengths are compared with other theoretical data. Good agreement is obtained except the transition: 1s2s(3S)2p3 2Po→1s22s2p2 2D. The deviation between our theoretical result and the MCDF theoretical value is about 46%, which needs further verifying. The Auger rates, Auger branching ratios, and Auger electron energy values of the important decay channels of the K-shell excited states are calculated by the saddle-point complex-rotation method. The calculated Auger rates and Auger electron energy values are also in good agreement with the corresponding reference data. For some K-shell states, the related energy levels and Auger branching ratios are reported for the first time. The present calculations results will provide valuable theoretical data for the calibration of spectral lines and Auger electron spectra in the relevant experiments. -
Keywords:
- K-shell excited resonance state /
- radiative transition /
- Auger transition /
- Auger electron
[1] Altun Z, Yumak A, Badnell N R, Colgan J, Pindzol M S 2004 A&A 420 775
[2] Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P, Rocca J J 2012 Nature 481 488Google Scholar
[3] Martin A, Nicolas G, Jacques S 2006 Nucl. Phys. A 777 1
[4] 冯雷, 蒋刚 2017 66 153201Google Scholar
Feng L, Jiang G 2017 Acta Phys. Sin. 66 153201Google Scholar
[5] Rødbro M, Bruch R, Bisgaard P 1979 J. Phys. B: At. Mol. Opt. Phys. 12 2413Google Scholar
[6] Schneider D, Bruch R, Butscher W, Schwarz W H E 1981 Phys. Rev. A 24 1223Google Scholar
[7] Bruch R, Schneider D, Schwarz W H E, Meinhart M, Johnson B M, Taulbjerg K 1979 Phys. Rev. A 19 587Google Scholar
[8] Itoh A, Schneider D, Schneider T, Zouros T J M, Nolte G, Schiwietz G, Zeitz W, Stolterfoht N 1985 Phys. Rev. A 31 684Google Scholar
[9] Kádár I, Ricz S, Végh J, Sulik B, Varga D, Berényi D 1990 Phys. Rev. A 41 3518Google Scholar
[10] Armour I A, Fawcett B C, Silver J D, Trabert E 1980 J. Phys. B: Atom. Molec. Phys. 13 2701Google Scholar
[11] Trabertt E, Fawcett B C 1979 J. Phys. B: Atom. Molec. Phys. 12 L441
[12] Faenov A Y 1994 Phys. Scr. 49 41Google Scholar
[13] Schlachter A S, Sant’Anna M M, Covington A M, Aguilar A, Gharaibeh M F, Emmons E D, Scully S W J, Phaneuf R A, Hinojosa G, Álvarez I, Cisneros C, Müller A, McLaughlin B M 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L103Google Scholar
[14] Gharaibeh M F, Hassan N E I, Shorman M M A L, Bizau J M, Cubaynes D, Guilbaud S, Sakho I, Blancard C, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 065201Google Scholar
[15] Müller A, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2018 Phys. Rev. A 97 013409Google Scholar
[16] Müller A, Borovik A, Buhr J T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2015 Phys. Rev. Lett. 114 013002Google Scholar
[17] Chen M H, Crasemann B 1988 At. Data Nucl. Data Tables 38 381Google Scholar
[18] Chen M H, Crasemann B 1987 Phys. Rev. A 35 4579Google Scholar
[19] Safronova U I, Shlyaptseva A S 1996 Phys. Scr. 54 254Google Scholar
[20] Zhou F Y, Ma Y L, Qu Y Z 2016 Phys. Rev. A 93 060501Google Scholar
[21] Sakho I, Sow M, Wagué A 2015 Phys. Scr. 90 045401Google Scholar
[22] Sun Y, Chen F, Gou B C 2011 J. Chem. Phys. 135 124309Google Scholar
[23] Sun Y, Gou B C, Chen C 2013 Phys. Rev. A 87 032509Google Scholar
[24] Chung K T 1979 Phys. Rev. A 20 1743Google Scholar
[25] Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Désesquelles J, Savukov I 2003 J. Phys. B: At. Mol. Opt. Phys. 67 062507Google Scholar
[26] Drake G W F 1982 Adv. At. Mol. Phys. 18 399Google Scholar
[27] Chung K T, Zhu X W, Wang Z W 1993 Phys. Rev. A 47 1740Google Scholar
[28] Drake G W F, Swainson R A 1990 Phys. Rev. A 41 1243Google Scholar
[29] Chung K T, Davis B F 1982 Phys. Rev. A 26 3278Google Scholar
[30] Davis B F, Chung K T 1984 Phys. Rev. A 29 1878Google Scholar
[31] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2018 NIST Atomic Spectra Database (ver. 5.6.1) [Online]. Available: https://physics.nist.gov/asd [2019, March 28]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
-
表 1 类硼S离子K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D)的权重中心能级(单位a.u.), 能量转化关系:1 a.u = 27.21138 eV
Table 1. Center of gravity levels of 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) of K-shell excited resonance states in boron-like sulfur ion (unit: a.u.). The energy conversion relationship: 1 a.u = 27.21138 eV.
共振态 ${E_{{\rm{nonrel}}}}/{\rm{a.u.}}$ ${E_{{\rm{total}}}}/{\rm{a.u.}}$ $ - {E_{{\rm{total}}}}/{\rm{eV}}$ ${E_{\rm{b}}} + \Delta {E_{{\rm{RV}}}}$ $\Delta {E_{{\rm{corr}}}}$ $\Delta {E_{\rm{S}}}$ 本文 SCUNC[21] 1s2s22p2 4P –229.35389 –0.64011 –0.00245 –229.99645 6258.52 1s2s22p2 2S –228.66774 –0.66777 –0.00174 –229.33725 6240.58 1s2s22p2 2P –228.81110 –0.66633 –0.00089 –229.47832 6244.42 1s2s22p2 2D –228.91613 –0.67942 0.00322 –229.59233 6247.52 1s2s(3S)2p3 4So –227.40768 –0.60823 0.00018 –228.01573 6204.62 1s2s(1S)2p3 4So –228.21123 –0.62298 0.00151 –228.83270 6226.85 1s2s(3S)2p3 4Po –228.00558 –0.62215 0.00106 –228.62667 6221.25 1s2s(3S)2p3 4Do –228.30315 –0.62288 –0.00017 –228.92620 6229.40 1s2s(3S)2p3 2So –226.86291 –0.62586 0.00070 –227.48807 6190.26 1s2s(3S)2p3 2Po –226.91669 –0.61114 0.00193 –227.52590 6191.29 1s2s(1S)2p3 2Po –227.28245 –0.61646 0.00620 –227.89271 6201.28 1s2s(3S)2p3 2Do –227.21472 –0.61330 0.00204 –227.82598 6199.46 1s2s(1S)2p3 2Do –227.56290 –0.62041 0.00280 –228.18051 6209.11 1s2p4 4P –226.53817 –0.55727 –0.00249 –227.09793 6179.65 6173.07 1s2p4 2S –225.47488 –0.56220 0.00072 –226.03636 6150.76 6145.67 1s2p4 2P –225.94003 –0.56493 0.00251 –226.50245 6163.44 6159.02 1s2p4 2D –226.07283 –0.56074 0.00279 –226.63078 6166.94 6163.51 表 2 S11+离子K壳层激发共振态, S11+, S12+离子低位激发态的精细结构能级(
$ - E$ , 单位eV)Table 2. Fine-structure energy levels of the K-shell excited resonance states in S11+ ion, and low-excited states in S11+, S12+ ion (
$ - E$ , unit eV).偶宇称 奇宇称 S11+离子K壳层激发态共振态 共振态 本文 文献[19] 共振态 本文 文献[19] 1s2s22p2 4P1/2 6259.50 6265.62 1s2s(3S)2p3 4S3/2 6204.62 6207.16 1s2s22p2 4P3/2 6258.83 6264.85 1s2s(1S)2p3 4S3/2 6226.85 6229.68 1s2s22p2 4P5/2 6257.99 6264.05 1s2s(3S)2p3 4P1/2 6221.05 6223.62 1s2s22p2 2S1/2 6240.58 6243.03 1s2s(3S)2p3 4P3/2 6221.24 6223.52 1s2s22p2 2P1/2 6245.72 6248.94 1s2s(3S)2p3 4P5/2 6221.32 6223.54 1s2s22p2 2P3/2 6243.77 6247.23 1s2s(3S)2p3 4D1/2 6229.21 6231.96 1s2s22p2 2D3/2 6247.38 6251.29 1s2s(3S)2p3 4D3/2 6229.21 6232.01 1s2s22p2 2D5/2 6247.62 6251.38 1s2s(3S)2p3 4D5/2 6229.30 6232.00 1s2p4 4P1/2 6178.53 6180.77 1s2s(3S)2p3 4D7/2 6229.61 6231.85 1s2p4 4P3/2 6179.12 6181.26 1s2s(3S)2p3 2S1/2 6190.26 6192.27 1s2p4 4P5/2 6180.37 6182.44 1s2s(3S)2p3 2P1/2 6191.17 6193.98 1s2p4 2S1/2 6150.76 6152.75 1s2s(3S)2p3 2P3/2 6191.36 6193.65 1s2p4 2P1/2 6163.28 6165.34 1s2s(1S)2p3 2P1/2 6201.72 6204.18 1s2p4 2P3/2 6163.52 6166.42 1s2s(1S)2p3 2P3/2 6201.05 6206.82 1s2p4 2D3/2 6166.83 6169.56 1s2s(3S)2p3 2D3/2 6199.29 6199.03 1s2p4 2D5/2 6167.00 6169.69 1s2s(3S)2p3 2D5/2 6199.57 6202.14 1s2s(1S)2p3 2D3/2 6209.23 6212.93 1s2s(1S)2p3 2D5/2 6209.03 6212.33 S11+离子低位激发态 激发态 本文 NIST[31] 激发态 本文 NIST[31] 1s22s2p2 4P1/2 8617.38 8617.29 1s22s22p 2P1/2 8641.58 8641.33 1s22s2p2 4P3/2 8616.83 8616.70 1s22s22p 2P3/2 8639.78 8639.70 1s22s2p2 4P5/2 8615.98 8615.86 1s22p3 4S3/2 8565.71 8565.69 1s22s2p2 2S1/2 8586.78 8586.83 1s22p3 2P1/2 8545.44 8545.36 1s22s2p2 2P1/2 8584.06 8583.71 1s22p3 2P3/2 8545.42 8545.14 1s22s2p2 2P3/2 8582.99 8582.88 1s22p3 2D3/2 8555.97 8555.79 1s22s2p2 2D3/2 8598.49 8598.35 1s22p3 2D5/2 8555.74 8555.72 1s22s2p2 2D5/2 8598.39 8598.31 S12+离子低位激发态 激发态 本文 NIST[31] 激发态 本文 NIST[31] 1s22s2 1S0 8076.99 8076.93 1s22s2p 1P1 8028.74 8028.63 1s22p2 1S0 7987.61 7987.44 1s22s2p 3P0 8052.36 8052.23 1s22p2 1D2 8004.12 8003.85 1s22s2p 3P1 8051.81 8051.70 1s22p2 3P0 8012.11 8012.06 1s22s2p 3P2 8050.64 8050.50 1s22p2 3P1 8011.53 8011.37 1s22p2 3P2 8010.43 8010.37 表 3 类硼S离子的K壳层激发共振态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的电偶极辐射跃迁线强度S (a.u.)、辐射跃迁率
${A_{ik}}$ (s–1) (长度规范${A_{\rm{l}}}$ , 速度规范${A_{\rm{v}}}$ , 加速度规范${A_{\rm{a}}}$ ), 跃迁振子强度${f_{ki}}$ (长度规范${f_{\rm{l}}}$ , 速度规范${f_{\rm{v}}}$ , 加速度规范${f_{\rm{a}}}$ ), 和跃迁波长$\lambda $ (Å), 方括号的数代表10的幂次方Table 3. Line strengths S (a.u.), radiative transition probabilities
${A_{ik}}$ (length gauge${A_{\rm{l}}}$ , velocity gauge${A_{\rm{v}}}$ , acceleration gauge${A_{\rm{a}}}$ ) (s–1), transition oscillator strengths${f_{ki}}$ (length gauge${f_{\rm{l}}}$ , velocity gauge${f_{\rm{v}}}$ , and acceleration gauge${f_{\rm{a}}}$ ), and transition wavelengths$\lambda $ (Å) of electric dipole transitions of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) in boron-like sulfur ion. The numbers in square brackets represent the power of 10.初态 末态 S/a.u. ${A_{ik}}/{\rm{s}}^{-1}$ ${f_{ki}}$ λ/Å ${A_{\rm{l}}}$ ${A_{\rm{v}}}$ ${A_{\rm{a}}}$ 文献[17] ${f_{\rm{l}}}$ ${f_{\rm{v}}}$ ${f_{\rm{a}}}$ 本文 文献[17] 文献[21] 1s2s22p2 4P 1s22p3 4So 5.06[–4] 5.48[11] 5.32[11] 5.31[11] 5.09[11] 7.14[–3] 6.94[–3] 6.92[–3] 5.374 5.379 1s2p4 4P 1s22p3 4So 2.14[–2] 2.55[13] 2.65[13] 2.67[13] 2.57[13] 3.12[–1] 3.23 [–1] 3.26[–1] 5.196 5.193 5.203 1s2s22p2 2S 1s22s22p 2Po 3.81[–3] 2.78[13] 2.82[13] 2.80[13] 2.93[13] 3.72[–2] 3.78[–2] 3.76[–2] 5.166 5.176 5.167 1s22p3 2Po 1.78[–4] 1.15[12] 1.15[12] 1.02[12] 9.87[11] 1.68[–3] 1.67[–3] 1.48[–3] 5.379 5.383 1s2s22p2 2P 1s22s22p 2Po 3.26[–2] 7.88[13] 7.87[13] 7.84[13] 7.53[13] 3.18[–1] 3.18[–1] 3.17[–1] 5.175 5.176 1s22p3 2Po 1.80[–4] 3.87[11] 3.88[11] 3.99[12] 3.20[11] 1.69[–3] 1.69[–3] 1.74[–3] 5.388 5.392 1s22p3 2Do 6.30[–4] 1.37[12] 1.39[12] 1.40[12] 1.23[12] 3.56[–3] 3.61[–3] 3.64[–3] 5.364 5.368 1s2s22p2 2D 1s22s22p2Po 1.92[–2] 2.77[13] 2.67[13] 2.64[13] 2.71[13] 1.87[–1] 1.80[–1] 1.78[–1] 5.181 5.183 1s22p3 2Po 1.01[–4] 1.29[11] 1.28[11] 1.45[11] 1.35[11] 9.43[–4] 9.34[–4] 1.06[–3] 5.396 5.401 1s22p3 2Do 3.68[–4] 7.98[11] 8.18[11] 8.25[11] 7.74[11] 3.46[–3] 3.55[–3] 3.59[–3] 5.371 5.375 1s2p4 2S 1s22p3 2Po 7.14[–3] 5.17[13] 5.26[13] 5.28[13] 5.13[13] 6.96[–2] 7.08[–2] 7.11[–2] 5.178 5.175 5.191 1s2p4 2P 1s22p3 2Po 1.75[–2] 4.17[13] 4.26[13] 4.26[13] 3.97[13] 1.70[–1] 1.74[–1] 1.73[–1] 5.205 5.205 5.217 1s22p3 2Do 2.89[–2] 6.97[13] 6.80[13] 6.71[13] 6.17[13] 1.69[–1] 1.65[–1] 1.63[–1] 5.182 5.182 5.191 1s2p4 2D 1s22s22p 2Po 2.58[–4] 4.09[11] 4.42[11] 4.14[11] 2.59[–3] 2.80[–3] 2.62[–3] 5.013 1s22p3 2Po 9.20[–3] 1.30[13] 1.32[13] 1.33[13] 1.32[13] 8.91[–2] 9.04[–2] 9.11[–2] 5.213 5.212 5.220 1s22p3 2Do 2.74[–2] 3.93[13] 4.10[13] 4.13[13] 4.02[13] 1.60[–1] 1.67[–1] 1.68[–1] 5.190 5.189 5.198 1s2s(1S)2p3 4So 1s22s2p2 4P 3.08[–2] 1.11[14] 1.09[14] 1.09[14] 1.09[14] 1.50[–1] 1.48[–1] 1.47[–1] 5.188 5.189 1s2s(3S)2p3 4So 1s22s2p2 4P 7.57[–4] 2.80[12] 2.90[12] 2.99[12] 2.28[12] 3.72[–3] 3.85[–3] 3.97[–3] 5.141 5.135 1s2s(3S)2p3 4Po 1s22s2p2 4P 2.33[–2] 2.81[13] 2.79[13] 2.80[13] 2.67[13] 1.14[–1] 1.13[–1] 1.13 [–1] 5.176 5.174 1s2s(3S)2p3 4Do 1s22s2p2 4P 3.89[–2] 2.79[13] 2.78[13] 2.77[13] 2.63[13] 1.89[–1] 1.88[–1] 1.88[–1] 5.194 5.192 1s2s(3S)2p3 2So 1s22s2p2 2P 1.57[–2] 1.13[14] 1.13[14] 1.13[14] 8.54[13] 1.53[–1] 1.52[–1] 1.52[–1] 5.181 5.180 1s2s(1S)2p3 2Po 1s22s2p2 2P 1.05[–3] 2.50[12] 2.78[12] 2.74[12] 2.53[12] 1.02[–2] 1.13[–2] 1.12[–2] 5.205 5.208 1s22s2p2 2D 1.71[–2] 4.14[13] 4.17[13] 4.14[13] 3.92[13] 1.00[–1] 1.01[–1] 1.00[–1] 5.172 5.173 1s2s(3S)2p3 2Po 1s22s2p2 2S 1.59[–3] 3.85[12] 3.93[12] 3.50[12] 3.55[12] 4.66[–2] 4.76[–2] 4.24[–2] 5.176 5.174 1s22s2p2 2P 1.00[–2] 2.42[13] 2.42[13] 2.30[13] 3.01[13] 9.79[–2] 9.79[–2] 9.31[–2] 5.183 5.183 1s22s2p2 2D 2.01[–3] 4.95[12] 4.92[12] 5.19[12] 3.38[12] 1.18[–2] 1.19[–2] 1.25[–2] 5.151 5.149 1s2s(1S)2p3 2Do 1s22s2p2 2P 1.85[–3] 2.60[12] 2.64[12] 2.64[12] 2.19[12] 1.79[–2] 1.81[–2] 1.81[–2] 5.222 5.225 1s22s2p2 2D 5.21[–2] 7.49[13] 7.54[13] 7.55[13] 7.13[13] 3.04[–1] 3.06[–1] 3.07[–1] 5.189 5.191 1s2s(3S)2p3 2Do 1s22s2p2 2P 1.70[–2] 2.43[13] 2.49[13] 2.50[13] 2.40[13] 1.65[–1] 1.69[–1] 1.70[–1] 5.201 5.201 1s22s2p2 2D 5.16[–3] 7.51[12] 7.72[12] 7.83[12] 7.84[12] 3.02[–2] 3.11[–2] 3.15[–2] 5.168 5.166 表 4 类硼S离子K壳层激发态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的俄歇跃迁率(s–1) 和俄歇分支率(BR), 方括号的数表示10的幂次方
Table 4. The Auger rates (s–1) and branching ratios (BR) of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L=S, P, D) in boron-like sulfur ion. The numbers in square brackets represent the power of 10.
俄歇跃迁通道 俄歇跃迁率/s–1 BR/% 俄歇跃迁通道 俄歇跃迁率/s–1 BR(%) 本文 文献[17] 本文 文献[17] 1s2s22p2 2S →1s22s2 1S 5.05[13] 8.33[13] 23.3 1s2s(1S)2p3 2Po→1s22s2 1S 6.63[11] 2.33[11] 0.3 2S →1s22s2p 1Po 6.35[13] 6.02[13] 29.3 2Po→1s22s2p 1Po 1.18[12] 1.46[13] 0.5 2S →1s22s2p 3Po 1.61[13] 2.06[13] 7.4 2Po→1s22s2p 3Po 1.29[14] 1.22[14] 59.6 2S →1s22p2 1S 7.10[13] 7.85[13] 32.8 2Po→1s22p2 1S 6.50[12] 5.20[12] 3.0 2S →1s22p2 1D 1.53[13] 1.48[13] 7.1 2Po→1s22p2 1D 5.25[12] 9.54[12] 2.4 2P→1s22s2p 1Po 1.82[13] 2.55[13] 14.7 2Po→1s22p2 3P 7.40[13] 7.54[13] 34.2 2P→1s22s2p 3Po 1.05[13] 7.34[12] 8.5 2Do→1s22s2p 1Po 7.30[12] 8.82[12] 2.8 2P→1s22p2 1D2 1.97[10] 7.42[12] 0 2Do→1s22s2p 3Po 1.74[14] 1.74[14] 66.1 2P→1s22p2 3P 9.50[13] 8.68[13] 76.8 2Do→1s22p2 1D 9.55[12] 1.40[13] 3.6 2D→1s22s2 1S 1.24[14] 1.14[14] 40.3 2Do→1s22p2 3P 7.25[13] 7.66[13] 27.5 2D→1s22s2p 1Po 6.80[13] 6.42[13] 22.1 4So→1s22p2 3P 3.85[13] 3.88[13] 100 2D→1s22s2p 3Po 1.72[13] 2.26[13] 5.6 1s2s(3S)2p3 2So→1s22p2 3P 6.55[13] 4.35[13] 100 2D→1s22p2 1S 3.43[12] 2.82[12] 1.1 2Po→1s22s2 1S 4.33[12] 2.67[12] 1.6 2D→1s22p2 1D 9.15[13] 9.22[13] 29.8 2Po→1s22s2p 1Po 1.28[14] 1.18[14] 46.9 2D→1s22p2 3P 3.37[12] 4.47[12] 1.1 2Po→1s22s2p 3Po 5.40[12] 7.38[12] 2.0 4P→1s22s2p 3Po 1.10[14] 1.18[14] 54.3 2Po→1s22p2 1S 4.54[13] 4.68[13] 16.6 4P→1s22p2 3P 9.25[13] 9.48[13] 45.7 2Po→1s22p2 1D 6.40[13] 6.23[13] 23.4 1s2p4 2S →1s22s2 1S 2.75[12] 3.04[11] 0.6 2Po→1s22p2 3P 2.58[13] 3.47[13] 9.5 2S →1s22s2p 1Po 4.15[12] 4.73[12] 1.0 2Do→1s22s2p 1Po 1.76[14] 1.71[14] 54.5 2S →1s22s2p 3Po 8.57[11] 1.48[12] 0.2 2Do→1s22s2p 3Po 6.85[12] 1.16[13] 2.1 2S →1s22p2 1S 2.43[14] 3.66[13] 56.3 2Do→1s22p2 1D 1.18[14] 1.19[14] 36.5 2S →1s22p2 1D 1.81[14] 1.87[14] 41.9 2Do→1s22p2 3P 2.22[13] 1.99[13] 6.9 2P→1s22s2p 1Po 2.73[11] 5.19[11] 0.1 4So →1s22p2 3P 1.92[14] 2.02[14] 100 2P→1s22s2p 3Po 2.38[11] 1.86[11] 0.1 4Po→1s22s2p 3Po 1.35[14] 1.38[14] 88.9 2P→1s22p2 1D2 6.95[10] 2.06[13] 0 4Po→1s22p2 3P 1.68[13] 1.45[13] 11.1 2P→1s22p2 3P 2.15[14] 1.90[14] 99.8 4Do→1s22s2p 3Po 1.84[14] 1.84[14] 90.4 2D→1s22s2 1S 2.95[12] 7.35[9] 1.0 4Do→1s22p2 3P 1.96[13] 1.41[13] 9.6 2D→1s22s2p 1Po 1.35[12] 1.38[12] 0.5 2D→1s22s2p 3Po 2.73[11] 4.54[11] 0.1 2D→1s22p2 1S 1.25[13] 4.09[13] 4.2 2D→1s22p2 1D 2.68[14] 2.74[14] 90.6 2D→1s22p2 3P 1.05[13] 1.26[13] 3.6 4P→1s22s2p 3Po 1.96[12] 2.50[12] 0.9 4P→1s22p2 3P 2.08[14] 2.09[14] 99.1 表 5 类硼S离子K壳层激发态1s2s22p2, 1s2s2p3, 1s2p4 2, 4L(L = S, P, D)的俄歇电子能量(单位: eV)
Table 5. The Auger electron energies of the K-shell excited resonance states 1s2s22p2, 1s2s2p3, 1s2p4 2, 4L (L = S, P, D) in boron-like sulfur ion (unit: eV).
跃迁通道 本文 文献[17] 跃迁通道 本文 文献[17] 1s2s22p2 2S1/2 1s22s2 1S0 1836.41 1837.80 1s2s(3S)2p3 2S1/2 1s22p2 3P0 1821.85 1825.18 1s22s2p 1P1 1788.16 1787.75 1s22p2 3P1 1821.27 1824.50 1s22s2p 3P0 1811.78 1812.97 1s22p2 3P2 1820.17 1823.49 1s22s2p 3P1 1811.23 1812.44 1s2s(3S)2p3 2P1/2 1s22s2 1S0 1885.82 1888.35 1s22s2p 3P2 1810.06 1811.23 1s22s2p 1P0 1837.57 1838.30 1s22p2 1S0 1747.03 1746.35 1s22s2p 3P1 1861.19 1863.52 1s22p2 1D2 1763.54 1763.33 1s22s2p 3P2 1860.64 1862.99 1s2s22p2 2P1/2 1s22s2p 1P1 1783.02 1782.25 1s22s2p 3P3 1859.47 1861.78 1s22s2p 3P0 1806.64 1807.47 1s22p2 1S0 1796.44 1796.90 1s22s2p 3P1 1806.09 1806.94 1s22p2 1D2 1812.95 1813.88 1s22s2p 3P2 1804.92 1805.74 1s22p2 3P0 1820.94 1823.09 1s22p2 1D2 1758.40 1757.84 1s22p2 3P1 1820.36 1822.41 1s22p2 3P0 1766.39 1767.05 1s22p2 3P2 1819.26 1821.40 1s22p2 3P1 1765.81 1766.37 1s2s(3S)2p3 2P3/2 1s22s2 1S0 1885.63 1888.87 1s22p2 3P2 1764.71 1765.36 1s22s2p 1P0 1837.38 1838.83 1s2s22p2 2P3/2 1s22s2p 1P1 1784.97 1784.03 1s22s2p 3P1 1861.00 1864.05 1s22s2p 3P0 1808.59 1809.25 1s22s2p 3P2 1860.45 1863.51 1s22s2p 3P1 1808.04 1808.72 1s22s2p 3P3 1859.28 1862.31 1s22s2p 3P2 1806.87 1807.52 1s22p2 1S0 1796.25 1797.43 1s22p2 1D2 1760.35 1759.62 1s22p2 1D2 1812.76 1814.41 1s22p2 3P0 1768.34 1768.83 1s22p2 3P0 1820.75 1823.62 1s22p2 3P1 1767.76 1768.15 1s22p2 3P1 1820.17 1822.94 1s22p2 3P2 1766.66 1767.14 1s22p2 3P2 1819.07 1821.93 1s2s22p2 2D3/2 1s22s2 1S0 1829.61 1830.38 1s2s(1S)2p3 2P1/2 1s22s2 1S0 1875.27 1877.33 1s22s2p 1P1 1781.36 1780.34 1s22s2p 1P0 1827.02 1827.28 1s22s2p 3P0 1804.98 1805.56 1s22s2p 3P1 1850.64 1852.50 1s22s2p 3P1 1804.43 1805.02 1s22s2p 3P2 1850.09 1851.97 1s22s2p 3P2 1803.26 1803.82 1s22s2p 3P3 1848.92 1850.77 1s22p2 1S0 1740.23 1738.94 1s22p2 1S0 1785.89 1785.88 1s22p2 1D2 1756.74 1755.92 1s22p2 1D2 1802.40 1802.87 1s22p2 3P0 1764.73 1765.13 1s22p2 3P0 1810.39 1812.08 1s22p2 3P1 1764.15 1764.45 1s22p2 3P1 1809.81 1811.40 1s22p2 3P2 1763.05 1763.44 1s22p2 3P2 1808.71 1810.39 1s2s22p2 2D5/2 1s22s2 1S0 1829.37 1830.33 1s2s(1S)2p3 2P3/2 1s22s2 1S0 1875.94 1877.26 1s22s2p 1P1 1781.12 1780.29 1s22s2p 1P0 1827.69 1827.21 1s22s2p 3P0 1804.74 1805.51 1s22s2p 3P1 1851.31 1852.43 1s22s2p 3P1 1804.19 1804.97 1s22s2p 3P2 1850.76 1851.90 1s22s2p 3P2 1803.02 1803.77 1s22s2p 3P3 1849.59 1850.70 1s22p2 1S0 1739.99 1738.89 1s22p2 1S0 1786.56 1785.81 1s22p2 1D2 1756.50 1755.87 1s22p2 1D2 1803.07 1802.80 1s22p2 3P0 1764.49 1765.08 1s22p2 3P0 1811.06 1812.01 1s22p2 3P1 1763.91 1764.40 1s22p2 3P1 1810.48 1811.33 1s22p2 3P2 1762.81 1763.39 1s22p2 3P2 1809.38 1810.32 1s2p4 2S1/2 1s22s2 1S0 1926.23 1930.57 1s2s(3S)2p3 2D3/2 1s22s2p 1P0 1829.45 1831.14 1s22s2p 1P1 1877.98 1880.52 1s22s2p 3P0 1853.07 1856.36 1s22s2p 3P0 1901.60 1905.75 1s22s2p 3P1 1852.52 1855.83 1s22s2p 3P1 1901.05 1905.21 1s22s2p 3P2 1851.35 1854.62 1s22s2p 3P2 1899.88 1904.01 1s22p2 1D2 1804.83 1806.72 1s22p2 1S0 1836.85 1839.13 1s22p2 3P0 1812.82 1815.93 1s22p2 1D2 1853.36 1856.11 1s22p2 3P1 1812.24 1815.25 1s2p4 2P1/2 1s22s2p 1P1 1865.46 1867.17 1s22p2 3P2 1811.14 1814.24 1s22s2p 3P0 1889.08 1892.39 1s2s(3S)2p3 2D5/2 1s22s2p 1P0 1829.17 1830.60 1s22s2p 3P1 1888.53 1891.86 1s22s2p 3P0 1852.79 1855.82 1s22s2p 3P2 1887.36 1890.66 1s22s2p 3P1 1852.24 1855.28 1s22p2 1D2 1840.84 1842.76 1s22s2p 3P2 1851.07 1854.08 1s22p2 3P0 1848.83 1851.97 1s22p2 1D2 1804.55 1806.18 1s22p2 3P1 1848.25 1851.29 1s22p2 3P0 1812.54 1815.39 1s22p2 3P2 1847.15 1850.28 1s22p2 3P1 1811.96 1814.71 1s2p4 2P3/2 1s22s2p 1P1 1865.22 1866.27 1s22p2 3P2 1810.86 1813.70 1s22s2p 3P0 1888.84 1891.50 1s2s(1S)2p3 2D3/2 1s22s2p 1P0 1819.51 1819.23 1s22s2p 3P1 1888.29 1890.96 1s22s2p 3P0 1843.13 1844.45 1s22s2p 3P2 1887.12 1889.76 1s22s2p 3P1 1842.58 1843.92 1s22p2 1D2 1840.60 1841.86 1s22s2p 3P2 1841.41 1842.71 1s22p2 3P0 1848.59 1851.07 1s22p2 1D2 1794.89 1794.81 1s22p2 3P1 1848.01 1850.39 1s22p2 3P0 1802.88 1804.02 1s22p2 3P2 1846.91 1849.38 1s22p2 3P1 1802.30 1803.35 1s2p4 2D3/2 1s22s2 1S0 1910.16 1913.47 1s22p2 3P2 1801.20 1802.33 1s22s2p 1P1 1861.91 1863.42 1s2s(1S)2p3 2D5/2 1s22s2p 1P0 1819.71 1819.38 1s22s2p 3P0 1885.53 1888.64 1s22s2p 3P0 1843.33 1844.60 1s22s2p 3P1 1884.98 1888.11 1s22s2p 3P1 1842.78 1844.07 1s22s2p 3P2 1883.81 1886.91 1s22s2p 3P2 1841.61 1842.86 1s22p2 1S0 1820.78 1822.02 1s22p2 1D2 1795.09 1794.96 1s22p2 1D2 1837.29 1839.01 1s22p2 3P0 1803.08 1804.17 1s22p2 3P0 1845.28 1848.22 1s22p2 3P1 1802.50 1803.50 1s22p2 3P1 1844.70 1847.54 1s22p2 3P2 1801.40 1802.49 1s22p2 3P2 1843.60 1846.53 1s2s(3S)2p3 4S3/2 1s22p2 3P0 1807.49 1810.50 1s2p4 2D5/2 1s22s2 1S0 1909.99 1913.40 1s22p2 3P1 1806.91 1809.82 1s22s2p 1P1 1861.74 1863.35 1s22p2 3P2 1805.81 1808.81 1s22s2p 3P0 1885.36 1888.57 1s2s(1S)2p3 4S3/2 1s22p2 3P0 1785.26 1785.14 1s22s2p 3P1 1884.81 1888.04 1s22p2 3P1 1784.68 1784.46 1s22s2p 3P2 1883.64 1886.84 1s22p2 3P2 1783.58 1783.45 1s22p2 1S0 1820.61 1821.95 1s2s(3S)2p 3 4P1/2 1s22s2p 3P0 1831.31 1832.66 1s22p2 1D2 1837.12 1838.94 1s22s2p 3P1 1830.76 1832.13 1s22p2 3P0 1845.11 1848.15 1s22s2p 3P2 1829.59 1830.93 1s22p2 3P1 1844.53 1847.47 1s22p2 3P0 1791.06 1792.24 1s22p2 3P2 1843.43 1846.46 1s22p2 3P1 1790.48 1791.56 1s2s22p2 4P1/2 1s22s2p 3P0 1792.86 1791.05 1s22p2 3P2 1789.38 1790.55 1s22s2p 3P1 1792.31 1790.51 1s2s(3S)2p3 4P3/2 1s22s2p 3P0 1831.12 1832.56 1s22s2p 3P2 1791.14 1789.31 1s22s2p 3P1 1830.57 1832.03 1s22p2 3P0 1752.61 1750.62 1s22s2p 3P2 1829.40 1830.83 1s22p2 3P1 1752.03 1749.94 1s22p2 3P0 1790.87 1792.14 1s22p2 3P2 1750.93 1748.93 1s22p2 3P1 1790.29 1791.46 1s2s22p2 4P3/2 1s22s2p 3P0 1793.53 1791.83 1s22p2 3P2 1789.19 1790.45 1s22s2p 3P1 1792.98 1791.30 1s2s(3S)2p3 4P5/2 1s22s2p 3P0 1831.04 1832.48 1s22s2p 3P2 1791.81 1790.09 1s22s2p 3P1 1830.49 1831.95 1s22p2 3P0 1753.28 1751.40 1s22s2p 3P2 1829.32 1830.75 1s22p2 3P1 1752.70 1750.72 1s22p2 3P0 1790.79 1792.06 1s22p2 3P2 1751.60 1749.71 1s22p2 3P1 1790.21 1791.38 1s2s22p2 4P5/2 1s22s2p 3P0 1794.37 1792.66 1s22p2 3P2 1789.11 1790.37 1s22s2p 3P1 1793.82 1792.13 1s2s(3S)2p3 4D1/2 1s22s2p 3P0 1823.15 1824.54 1s22s2p 3P2 1792.65 1790.92 1s22s2p 3P1 1822.60 1824.01 1s22p2 3P0 1754.12 1752.23 1s22s2p 3P2 1821.43 1822.80 1s22p2 3P1 1753.54 1751.55 1s22p2 3P0 1782.90 1784.11 1s22p2 3P2 1752.44 1750.54 1s22p2 3P1 1782.32 1783.43 1s2p4 4P1/2 1s22s2p 3P0 1873.83 1876.31 1s22p2 3P2 1781.22 1782.42 1s22s2p 3P1 1873.28 1875.78 1s2s(3S)2p3 4D3/2 1s22s2p 3P0 1823.15 1824.49 1s22s2p 3P2 1872.11 1874.57 1s22s2p 3P1 1822.60 1823.96 1s22p2 3P0 1833.58 1835.88 1s22s2p 3P2 1821.43 1822.75 1s22p2 3P1 1833.00 1835.20 1s22p2 3P0 1782.90 1784.06 1s22p2 3P2 1831.90 1834.19 1s22p2 3P1 1782.32 1783.39 1s2p4 4P3/2 1s22s2p 3P0 1873.24 1875.77 1s22p2 3P2 1781.22 1782.38 1s22s2p 3P1 1872.69 1875.24 1s2s(3S)2p3 4D5/2 1s22s2p 3P0 1823.06 1824.41 1s22s2p 3P2 1871.52 1874.03 1s22s2p 3P1 1822.51 1823.88 1s22p2 3P0 1832.99 1835.34 1s22s2p 3P2 1821.34 1822.67 1s22p2 3P1 1832.41 1834.66 1s22p2 3P0 1782.81 1783.98 1s22p2 3P2 1831.31 1833.65 1s22p2 3P1 1782.23 1783.30 1s2p4 4P5/2 1s22s2p 3P0 1871.99 1874.50 1s22p2 3P2 1781.13 1782.29 1s22s2p 3P1 1871.44 1873.96 1s2s(3S)2p3 4D7/2 1s22s2p 3P1 1822.20 1823.70 1s22s2p 3P2 1870.27 1872.76 1s22s2p 3P2 1821.03 1822.50 1s22p2 3P0 1831.74 1834.07 1s22p2 3P1 1781.92 1783.13 1s22p2 3P1 1831.16 1833.39 1s22p2 3P2 1780.82 1782.12 1s22p2 3P2 1830.06 1832.38 -
[1] Altun Z, Yumak A, Badnell N R, Colgan J, Pindzol M S 2004 A&A 420 775
[2] Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P, Rocca J J 2012 Nature 481 488Google Scholar
[3] Martin A, Nicolas G, Jacques S 2006 Nucl. Phys. A 777 1
[4] 冯雷, 蒋刚 2017 66 153201Google Scholar
Feng L, Jiang G 2017 Acta Phys. Sin. 66 153201Google Scholar
[5] Rødbro M, Bruch R, Bisgaard P 1979 J. Phys. B: At. Mol. Opt. Phys. 12 2413Google Scholar
[6] Schneider D, Bruch R, Butscher W, Schwarz W H E 1981 Phys. Rev. A 24 1223Google Scholar
[7] Bruch R, Schneider D, Schwarz W H E, Meinhart M, Johnson B M, Taulbjerg K 1979 Phys. Rev. A 19 587Google Scholar
[8] Itoh A, Schneider D, Schneider T, Zouros T J M, Nolte G, Schiwietz G, Zeitz W, Stolterfoht N 1985 Phys. Rev. A 31 684Google Scholar
[9] Kádár I, Ricz S, Végh J, Sulik B, Varga D, Berényi D 1990 Phys. Rev. A 41 3518Google Scholar
[10] Armour I A, Fawcett B C, Silver J D, Trabert E 1980 J. Phys. B: Atom. Molec. Phys. 13 2701Google Scholar
[11] Trabertt E, Fawcett B C 1979 J. Phys. B: Atom. Molec. Phys. 12 L441
[12] Faenov A Y 1994 Phys. Scr. 49 41Google Scholar
[13] Schlachter A S, Sant’Anna M M, Covington A M, Aguilar A, Gharaibeh M F, Emmons E D, Scully S W J, Phaneuf R A, Hinojosa G, Álvarez I, Cisneros C, Müller A, McLaughlin B M 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L103Google Scholar
[14] Gharaibeh M F, Hassan N E I, Shorman M M A L, Bizau J M, Cubaynes D, Guilbaud S, Sakho I, Blancard C, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 065201Google Scholar
[15] Müller A, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2018 Phys. Rev. A 97 013409Google Scholar
[16] Müller A, Borovik A, Buhr J T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2015 Phys. Rev. Lett. 114 013002Google Scholar
[17] Chen M H, Crasemann B 1988 At. Data Nucl. Data Tables 38 381Google Scholar
[18] Chen M H, Crasemann B 1987 Phys. Rev. A 35 4579Google Scholar
[19] Safronova U I, Shlyaptseva A S 1996 Phys. Scr. 54 254Google Scholar
[20] Zhou F Y, Ma Y L, Qu Y Z 2016 Phys. Rev. A 93 060501Google Scholar
[21] Sakho I, Sow M, Wagué A 2015 Phys. Scr. 90 045401Google Scholar
[22] Sun Y, Chen F, Gou B C 2011 J. Chem. Phys. 135 124309Google Scholar
[23] Sun Y, Gou B C, Chen C 2013 Phys. Rev. A 87 032509Google Scholar
[24] Chung K T 1979 Phys. Rev. A 20 1743Google Scholar
[25] Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Désesquelles J, Savukov I 2003 J. Phys. B: At. Mol. Opt. Phys. 67 062507Google Scholar
[26] Drake G W F 1982 Adv. At. Mol. Phys. 18 399Google Scholar
[27] Chung K T, Zhu X W, Wang Z W 1993 Phys. Rev. A 47 1740Google Scholar
[28] Drake G W F, Swainson R A 1990 Phys. Rev. A 41 1243Google Scholar
[29] Chung K T, Davis B F 1982 Phys. Rev. A 26 3278Google Scholar
[30] Davis B F, Chung K T 1984 Phys. Rev. A 29 1878Google Scholar
[31] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2018 NIST Atomic Spectra Database (ver. 5.6.1) [Online]. Available: https://physics.nist.gov/asd [2019, March 28]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
计量
- 文章访问数: 7768
- PDF下载量: 44
- 被引次数: 0