搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W65+—W71+离子2s1/2—2p3/2电子碰撞激发过程及相应辐射跃迁谱线极化度的理论研究

马小云 董晨钟 武中文 蒋军 颉录有

引用本文:
Citation:

W65+—W71+离子2s1/2—2p3/2电子碰撞激发过程及相应辐射跃迁谱线极化度的理论研究

马小云, 董晨钟, 武中文, 蒋军, 颉录有

Theoretical study on electron-impact excitation processes and the relevant polarization of radiation of 2s1/2—2p3/2 in W65+ through W71+

Ma Xiao-Yun, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun, Xie Lu-You
PDF
导出引用
  • 利用基于多组态Dirac-Fock理论方法的原子结构及性质计算程序GRASP92, 详细研究了类氟W65+到类锂W71+离子的2p3/2—2s1/2跃迁性质. 计算结果与Podpaly等[Phys. Rev. A 80 052504 (2009)]的实验结果符合得非常好. 在此基础上, 利用全相对论扭曲波方法研究了2s1/2—2p3/2的电子碰撞激发总截面和磁子能级碰撞激发截面以及部分谱线的线性极化度, 分析了电子碰撞激发截面和谱线线性极化度随碰撞能量的变化规律.
    In this paper, the excitation energy and radiative transition probabilities are calculated for 2p3/2-2s1/2 transition in W65+ through W71+ ions, by using GRASP92 package based on the multi-configuration Dirac-Fock method. The present calculations are compared with other theoretical and experimental results [Podpaly et al. 2009 Phys. Rev. A 80 052504], and they are in good agreement each other. Furthermore, the total cross section and the magnetic sublevels cross section for the 2s1/2-2p3/2 excitation in W65+ through W71+ ions as well as the polarization of resulting transitional lines are calculated, with a fully relativistic distorted-wave method. Based on the calculation, the variations of the excitation cross sections and polarization with the increase of incident electron energy are discussed systematically.
    • 基金项目: 国家自然科学基金(批准号: 11274254, 10964010, 11147018)、 国家自然科学基金重大研究计划(批准号: 91126007)、 甘肃省中青年科技基金(批准号: 1107RJYA003)和甘肃省高等学校科研业务费专项基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274245, 10964010, 11147018), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91126007), the Science-Technology Foundation for Middle-aged and Young Scientist of Gansu Province, China (Grant No. 1107RJYA003), and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province of China.
    [1]

    Reader J 2009 Phys. Scr. T134 014023

    [2]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A 2007 Nucl. Fusion 47 S285

    [3]

    Donné A J H, Costley A E, Barnsley R, Bindslev H, Boivin R, Conway G 2007 Nucl. Fusion 47 S337

    [4]

    Skinner C H 2009 Phys. Scr. T134 014022

    [5]

    Ralchenko Yu, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517

    [6]

    Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504

    [7]

    Balance C P, Griffin D C 2007 J. Phys. B 40 247

    [8]

    James J B, Zikir A, Hugh P K 1993 Phys. Rev. A 47 4811

    [9]

    Balance C P, Griffin D C 2006 J. Phys. B 39 3617

    [10]

    Shen T M, Chen C Y, Wang Y S, Zou Y M, Gu M F 2007 J. Phys. B 40 3075

    [11]

    Behar E, Mandelbaum P, Schwob J L 1999 Phys. Rev. A 54 2787

    [12]

    Loch S D, Ludlow J A, Pindzola M S, Whiteford A D, Griffin D C 2005 Phys. Rev. A 72 052716

    [13]

    Safronova U I, Safronova A S, Beiersdorfer P, Johnson W R 2011 J. Phys. B 44 035005

    [14]

    Chen M H, Cheng K T 2011 Phys. Rev. A 84 012513

    [15]

    Henderson J R, Beiersdorfer P, Bennett C L 1990 Phys. Rev. Lett. 65 705

    [16]

    Knapp D A, Marrs R E, Elliott S R, Magee E W, Zasadzinski R 1993 Nucl. Instr. Meth. Phys. Res. A 334 305

    [17]

    Clementson J, Beiersdorfer P, Gu M F 2010 Phys. Rev. A 81 012505

    [18]

    Putterich T, Neu R, Biedermann C, Radtke R, ASDEX Upgrade Team 2005 J. Phys. B 38 3071

    [19]

    Yanagibayashi J, Nakano T, Iwamae A, Kubo H, Hasuo M, Itami K 2010 J. Phys. B 43 144013

    [20]

    Harte C S, Suzuki C, Kato T, Sakaue H A, Kato D, Sato K, Tamura N, Sudo S, Arcy R D, Sokell E, White J, Sullivan G O 2010 J. Phys. B 43 205004

    [21]

    Ralchenko Yu, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U, Holland G E 2008 J. Phys. B 41 021003

    [22]

    Clementson J, Beiersdorfer P 2010 Phys. Rev. A 81 052509

    [23]

    Schippers S, Bernhardt D, Müller A, Krantz C, Grieser M, Repnow R, Wolf A, Lestinsky M, Hahn M, Novotny O, Savin D W 2011 Phys. Rev. A 83 012711

    [24]

    Müller A, Schippers S, Kilcoyne A L D, Esteves D 2011 Phys. Scr. T144 014052

    [25]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [26]

    Fritzsche S, Fischer C, Dong C Z 2002 Comput. Phys. Commun. 124 340

    [27]

    Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709

    [28]

    Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691

    [29]

    Wu Z W, Jiang J, Dong C Z 2011 Phys. Rev. A 84 032713

    [30]

    Xie L Y, Zhang Z Y, Dong C Z, Jiang J 2008 Acta Phys. Sin. 57 6249 (in Chinese) [颉录有, 张志远, 董晨钟, 蒋军 2008 57 6249 ]

    [31]

    Yang N X, Jiang J, Xie L Y, Dong C Z 2008 Acta Phys. Sin. 57 2888 (in Chinese) [杨宁选, 蒋军, 颉录有, 董晨钟 2008 57 2888]

    [32]

    Zhang H L, Sampson D H, Clark R E H 1990 Phys. Rev. A 41 198

    [33]

    Zhang H L, Sampson D H 2002 Phys. Rev. A 66 042704

    [34]

    Rose M E 1961 Relativistic Electron Theory (Vol. 5) p207 (New York: Wiley)

    [35]

    Zhang H L, Sampson D H, Mohanty A K 1989 Phys. Rev. A 40 616

    [36]

    Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507

    [37]

    Sampson D H, Zhang H L, Mohanty A K 1989 Phys. Rev. A 40 604

    [38]

    Zhang H L, Sampson D H 1990 Phys. Rev. A 42 5378

    [39]

    Percival I C, Seaton M J 1958 Philos. Trans. R. Soc. London A 251 113

    [40]

    Reed K J, Chen M H 1993 Phys. Rev. A 48 3644

  • [1]

    Reader J 2009 Phys. Scr. T134 014023

    [2]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A 2007 Nucl. Fusion 47 S285

    [3]

    Donné A J H, Costley A E, Barnsley R, Bindslev H, Boivin R, Conway G 2007 Nucl. Fusion 47 S337

    [4]

    Skinner C H 2009 Phys. Scr. T134 014022

    [5]

    Ralchenko Yu, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517

    [6]

    Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504

    [7]

    Balance C P, Griffin D C 2007 J. Phys. B 40 247

    [8]

    James J B, Zikir A, Hugh P K 1993 Phys. Rev. A 47 4811

    [9]

    Balance C P, Griffin D C 2006 J. Phys. B 39 3617

    [10]

    Shen T M, Chen C Y, Wang Y S, Zou Y M, Gu M F 2007 J. Phys. B 40 3075

    [11]

    Behar E, Mandelbaum P, Schwob J L 1999 Phys. Rev. A 54 2787

    [12]

    Loch S D, Ludlow J A, Pindzola M S, Whiteford A D, Griffin D C 2005 Phys. Rev. A 72 052716

    [13]

    Safronova U I, Safronova A S, Beiersdorfer P, Johnson W R 2011 J. Phys. B 44 035005

    [14]

    Chen M H, Cheng K T 2011 Phys. Rev. A 84 012513

    [15]

    Henderson J R, Beiersdorfer P, Bennett C L 1990 Phys. Rev. Lett. 65 705

    [16]

    Knapp D A, Marrs R E, Elliott S R, Magee E W, Zasadzinski R 1993 Nucl. Instr. Meth. Phys. Res. A 334 305

    [17]

    Clementson J, Beiersdorfer P, Gu M F 2010 Phys. Rev. A 81 012505

    [18]

    Putterich T, Neu R, Biedermann C, Radtke R, ASDEX Upgrade Team 2005 J. Phys. B 38 3071

    [19]

    Yanagibayashi J, Nakano T, Iwamae A, Kubo H, Hasuo M, Itami K 2010 J. Phys. B 43 144013

    [20]

    Harte C S, Suzuki C, Kato T, Sakaue H A, Kato D, Sato K, Tamura N, Sudo S, Arcy R D, Sokell E, White J, Sullivan G O 2010 J. Phys. B 43 205004

    [21]

    Ralchenko Yu, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U, Holland G E 2008 J. Phys. B 41 021003

    [22]

    Clementson J, Beiersdorfer P 2010 Phys. Rev. A 81 052509

    [23]

    Schippers S, Bernhardt D, Müller A, Krantz C, Grieser M, Repnow R, Wolf A, Lestinsky M, Hahn M, Novotny O, Savin D W 2011 Phys. Rev. A 83 012711

    [24]

    Müller A, Schippers S, Kilcoyne A L D, Esteves D 2011 Phys. Scr. T144 014052

    [25]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [26]

    Fritzsche S, Fischer C, Dong C Z 2002 Comput. Phys. Commun. 124 340

    [27]

    Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709

    [28]

    Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691

    [29]

    Wu Z W, Jiang J, Dong C Z 2011 Phys. Rev. A 84 032713

    [30]

    Xie L Y, Zhang Z Y, Dong C Z, Jiang J 2008 Acta Phys. Sin. 57 6249 (in Chinese) [颉录有, 张志远, 董晨钟, 蒋军 2008 57 6249 ]

    [31]

    Yang N X, Jiang J, Xie L Y, Dong C Z 2008 Acta Phys. Sin. 57 2888 (in Chinese) [杨宁选, 蒋军, 颉录有, 董晨钟 2008 57 2888]

    [32]

    Zhang H L, Sampson D H, Clark R E H 1990 Phys. Rev. A 41 198

    [33]

    Zhang H L, Sampson D H 2002 Phys. Rev. A 66 042704

    [34]

    Rose M E 1961 Relativistic Electron Theory (Vol. 5) p207 (New York: Wiley)

    [35]

    Zhang H L, Sampson D H, Mohanty A K 1989 Phys. Rev. A 40 616

    [36]

    Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507

    [37]

    Sampson D H, Zhang H L, Mohanty A K 1989 Phys. Rev. A 40 604

    [38]

    Zhang H L, Sampson D H 1990 Phys. Rev. A 42 5378

    [39]

    Percival I C, Seaton M J 1958 Philos. Trans. R. Soc. London A 251 113

    [40]

    Reed K J, Chen M H 1993 Phys. Rev. A 48 3644

  • [1] 胡靖宇, 毛腾飞, 豆福全, 赵清. 复合绝热通道技术在谐相互作用调制的Landau-Zener模型中的应用.  , 2013, 62(17): 170303. doi: 10.7498/aps.62.170303
    [2] 牟致栋, 魏琦瑛. Nb XIII离子3d94s2, 3d94s4p, 3d94p2 组态能级结构与跃迁的理论研究.  , 2013, 62(10): 103101. doi: 10.7498/aps.62.103101
    [3] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究.  , 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [4] 刘丽娟, 颉录有, 陈展斌, 蒋军, 董晨钟. 镁原子碰撞激发微分截面和Stokes参数的理论研究.  , 2012, 61(10): 103102. doi: 10.7498/aps.61.103102
    [5] 丁建勋, 黄海军. 考虑停靠站影响的公交运输系统模型.  , 2010, 59(5): 3093-3098. doi: 10.7498/aps.59.3093
    [6] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响.  , 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [7] 刘延君, 董晨钟, 蒋军, 颉录有. 电子与类铍N3+和O4+离子碰撞激发截面的相对论扭曲波计算.  , 2009, 58(4): 2320-2327. doi: 10.7498/aps.58.2320
    [8] 申晓志, 袁 萍, 王 杰, 郭逸潇, 乔红贞, 赵学燕. 拟合参量计算跃迁概率.  , 2008, 57(7): 4066-4069. doi: 10.7498/aps.57.4066
    [9] 颉录有, 张志远, 董晨钟, 蒋 军. 高离化态类镍离子电子碰撞激发过程的相对论扭曲波理论研究.  , 2008, 57(10): 6249-6258. doi: 10.7498/aps.57.6249
    [10] 高 城, 沈云峰, 曾交龙. 电子相关对Xe10+离子4d8—4d75p跃迁系跃迁概率的影响.  , 2008, 57(7): 4059-4065. doi: 10.7498/aps.57.4059
    [11] 欧阳永中, 易有根, 朱正和, 郑志坚. 类铍离子磁四极M2 2s2 1S0—2s2p3P2 (Z=10—103)禁戒跃迁.  , 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [12] 申晓志, 袁 萍, 李冀光, 董晨钟, 颉录有, 师应龙. NⅡ离子2p4f—2p3d辐射跃迁概率的理论研究.  , 2007, 56(10): 5715-5722. doi: 10.7498/aps.56.5715
    [13] 李 杰, 董晨钟, 颉录有. 内壳层电子激发(电离)诱发的电子波函数的弛豫及其对辐射跃迁概率的影响.  , 2006, 55(2): 655-660. doi: 10.7498/aps.55.655
    [14] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭. 高阶阈值上电离的量子电动力学理论.  , 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [15] 牟致栋, 魏琦瑛. MoⅩⅣ—RuⅩⅥ离子的3d104s—3d94s4p跃迁谱线波长和振子强度的计算.  , 2004, 53(6): 1742-1748. doi: 10.7498/aps.53.1742
    [16] 袁 萍, 刘欣生, 张义军, 颉录有, 董晨钟. 弛豫与关联效应对NII离子2s22p3s3P1—2s22p21D2与2s22p3s1P1—2s22p23P0,1,2自旋禁戒跃迁概率的影响.  , 2003, 52(3): 561-565. doi: 10.7498/aps.52.561
    [17] 袁萍, 刘欣生, 张义军, 颉录有, 董晨钟. 与闪电过程有关的NII离子能级寿命的理论计算.  , 2002, 51(11): 2495-2502. doi: 10.7498/aps.51.2495
    [18] 颉录有, 董晨钟, 马新文, 袁萍, 颜君, 曲一至. 类Ne等电子系列离子(Z=11,…,18)2p~53s—2p~6辐射跃迁的多组态相对论理论计算.  , 2002, 51(9): 1965-1971. doi: 10.7498/aps.51.1965
    [19] 易有根, 朱正和, 唐永建, 付依备. Be,Mg和Ca原子电四极矩E2~1D—~1S跃迁的能级和跃迁概率.  , 2001, 50(1): 37-41. doi: 10.7498/aps.50.37
    [20] 易有根, 汪 蓉, 李向东, 王红艳, 朱正和. 高离化类铍离子2s21S0—2s2p3P1(Z=10—103)自旋禁戒光谱跃迁.  , 2000, 49(10): 1953-1958. doi: 10.7498/aps.49.1953
计量
  • 文章访问数:  7230
  • PDF下载量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-14
  • 修回日期:  2012-05-27
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map