搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光模拟瞬态剂量率闩锁效应电流特征机制研究

陈钱 马英起 陈睿 朱翔 李悦 韩建伟

引用本文:
Citation:

激光模拟瞬态剂量率闩锁效应电流特征机制研究

陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟

Characteristics of latch-up current of dose rate effect by laser simulation

Chen Qian, Ma Ying-Qi, Chen Rui, Zhu Xiang, Li Yue, Han Jian-Wei
PDF
HTML
导出引用
  • 互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)工艺集成电路由于寄生的PNPN结构使其可能会受到闩锁效应的影响, 在全局辐照下由瞬态剂量率效应诱发的闩锁具有独特的性能. 本文利用激光模拟瞬态剂量率效应装置, 针对体硅CMOS工艺解串器FIN1218MTDX, 进行瞬态剂量率闩锁效应的实验研究, 探究其闩锁阈值和闩锁电流特征. 实验获得了该器件在3.3 V工作电压时的瞬态剂量率闩锁阈值光功率密度为(8.5 ± 1.2) × 104 W/cm2; 并发现在工作电压3.3和3.6 V, 光功率密度1.9 × 106—1.6 × 107 W/cm2的辐照下, 闩锁电流发生了明显的降低, 即出现了闩锁电流的“窗口现象”. 基于闩锁等效电路模型, 利用多路径闩锁机制, 构建HSPICE模型对激光实验暴露出的瞬态剂量率闩锁特征进行了机理分析. 结果表明: 激光实验中闩锁电流波动是由于多路径闩锁机制所致, 其会在特定电路结构中促使器件的闩锁路径发生切换, 从而诱发这一现象.
    Due to the parasitic PNPN structure, the complementary metal oxide semiconductor (CMOS) integrated circuit may be affected by the latch-up effect, and the latching induced by the transient high dose rate Gamma ray has unique characteristics. In order to explore the complex physical mechanism of the latch-up by transient dose rate effect, in this paper we select the pulsed laser with 1064 nm wavelength as an radiation source to simulate the gamma ray radiation environment, select bulk silicon CMOS deserializer FIN1218MTDX, and use transient dose rate effect laser simulation experiments to explore its latch-up threshold and latch-up current characteristics. The test obtains that the dose rate latch-up threshold optical power density of the device at 3.3 V operating voltage is (8.5 ± 1.2) × 104 W/cm2, a latch-up voltage of the device is 2.8 V, only the device latches when the supply voltage is greater than 2.8 V. At the same time, it is found that under the working voltages of 3.3 V and 3.6 V and the optical power density between 1.9 × 106 W/cm2 and 1.6 × 107 W/cm2, the latch-up current significantly decreases, the latch-up current " window phenomenon” appears. Based on the equivalent circuit model, the multi-path latching mechanism is used to construct the HSPICE model. The mechanism of the transient dose rate latching characteristics exposed by the laser test is analyzed by circuit-level simulation. The results show that the latch-up current and the latch-up voltage are related to its own latch structure when the device is latched. The phenomenon of latch-up current window in laser test is due to the multi-path latch mechanism, which will be in the specific circuit structure, and causing the multiple latch-up paths of the device to be switched. The reason of the latch-up path is switched is that the different holding voltages and trigger conditions between the latch-up paths, distributed resistance in the circuit reduces the voltage of latch-up path, so that the holding voltage of the latch-up path cannot be satisfied and the latch-up path is released. At the same time the other latch-up path is latched.
      通信作者: 韩建伟, hanjw@nssc.ac.cn
    • 基金项目: 中国科学院科技创新重点部署项目(批准号: KGFZD-135-16-005)和中国科学院空间科学战略性先导科技专项(批准号: XDA15015500)资助的课题.
      Corresponding author: Han Jian-Wei, hanjw@nssc.ac.cn
    • Funds: Project supported by Key Project of Science and Technology Innovation Foundation of Chinese Academy of Sciences (Grant No. KGFZD-135-16-005) and the Space Science Strategic Pilot Technology Special Project of Chinese Academy of Sciences (Grant No. XDA15015500).
    [1]

    Marshall R W 1963 Tenth Annual East Coast Conference on Aerospace and Navigational Electronics Baltimore, USA, October 21−23, 1963 p1411

    [2]

    WIrth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24

    [3]

    Ellis T D, Kim Y D 1978 IEEE Trans. Nucl. Sci. 25 1489Google Scholar

    [4]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atom Energ. Sci. Technol. 48 2165Google Scholar

    [5]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 微电子学 44 510

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Microelectronics 44 510

    [6]

    梁堃, 孙鹏, 李沫, 代刚, 李顺, 解磊 2017 原子能科学技术 51 187Google Scholar

    Liang K, Sun P, Li M, Dai G, Li S, Xie L 2017 Atom. Energ. Sci. Technol. 51 187Google Scholar

    [7]

    岳龙, 张战刚, 何玉娟, 郝明明, 雷志峰, 刘远 2017 太赫兹科学与电子信息学报 15 139Google Scholar

    Yue L, Zhang Z G, He Y J, Hao M M, Lei Z F, Liu Y 2017 J. THZ Sci. Electron. Inform. Technol. 15 139Google Scholar

    [8]

    NikZorov A Y, Skorobogatov P K 1996 IEEE Trans. Nucl. Sci. 43 3115Google Scholar

    [9]

    Skorobogatov P K, Nikiforov A Y, Demidov A A 1998 IEEE Trans. Nucl. Sci. 45 2659Google Scholar

    [10]

    Raburn W D, Buchner S P, Kang K, Singh R, Sayers S 1988 IEEE Trans. Nucl. Sci. 35 1512Google Scholar

    [11]

    Johnston A H 1993 IEEE Trans. Nucl. Sci. 40 1694Google Scholar

    [12]

    Ochoa A, Dressendorfer P V 1981 IEEE Trans. Nucl. Sci. 28 4292Google Scholar

    [13]

    Azarewicz J L, Hardwick W H 1982 IEEE Trans. Nucl. Sci. 29 1803Google Scholar

    [14]

    Coppage F N, Allen D J, Dressendorfer P V, Ochoa A, Rauchfuss J, Wrobel T F 1983 IEEE Trans. Nucl. Sci. 30 4122Google Scholar

    [15]

    Johnston A H, Baze M P 1985 IEEE Trans. Nucl. Sci. 32 4017

    [16]

    Plaag R E, Baze M P, Johnston A H 1988 IEEE Trans. Nucl. Sci. 35 1563Google Scholar

    [17]

    Johnston A H, Plaag R E, Baze M P 1989 IEEE Trans. Nucl. Sci. 36 2229Google Scholar

    [18]

    许献国, 杨怀民, 胡健栋 2004 核电子学与探测技术 24 674Google Scholar

    Xu X G, Yang H M, Hu J D 2004 Nucl. Electron. Detect. Technol. 24 674Google Scholar

    [19]

    许献国, 徐曦, 胡健栋, 赵汝清 2005 强激光与粒子束 17 633

    Xu X G, Xu X, Hu J D, Zhao R Q 2005 High Pow. Las. Part. Beam. 17 633

  • 图 1  激光实验系统示意图

    Fig. 1.  Schematic diagram of the laser test system

    图 2  闩锁电流变化图

    Fig. 2.  Latch current change diagram

    图 3  PNPN结构闩锁示意图

    Fig. 3.  Latch diagram of PNPN structure

    图 4  多路径闩锁SPICE仿真模型

    Fig. 4.  Multi-path latching SPICE simulation model

    图 5  6 V时各路径电流情况 (a)整个电路; (b)路径1; (c)路径2

    Fig. 5.  Each path current at 6 V: (a) Whole entire circuit; (b) path 1; (c) path 2

    图 6  5 V时各路径电流情况 (a)整个电路; (b)路径1; (c)路径2

    Fig. 6.  Each path current at 5 V: (a) Whole entire circuit; (b) path 1; (c) path 2

    表 1  实验装置技术指标

    Table 1.  Test equipment technical parameters

    装置名称 激光
    波长
    脉冲
    宽度
    最大光斑尺寸 最大
    能量
    重复频率
    激光瞬态剂量率辐照装置 1064 nm 10 ns 1 cm 1 J 1—10 Hz
    下载: 导出CSV

    表 2  路径参数

    Table 2.  Path parameters

    路径1 图4右侧路径 路径2 图4左侧路径
    阈值触发电流 14 mA 阈值触发电流 20 mA
    维持电压 3.7 V 维持电压 5 V
    6 V闩锁电流 46 mA 6 V闩锁电流 49 mA
    5 V闩锁电流 36 mA 5 V闩锁电流 38 mA
    下载: 导出CSV

    表 3  仿真结果表

    Table 3.  Simulation results table

    触发电流/mA 偏置电压5 V 偏置电压6 V
    闩锁情况 闩锁路径 闩锁电流/ mA 闩锁情况 闩锁路径 闩锁电流/ mA
    13 不闩锁 不闩锁
    14 闩锁 路径1 36 闩锁 路径1 46
    19 闩锁 路径1 36 闩锁 路径1 46
    20 闩锁 路径1 36 闩锁 路径2 38
    21 闩锁 路径1 36 闩锁 路径1 46
    27 闩锁 路径1 36 闩锁 路径1 46
    下载: 导出CSV
    Baidu
  • [1]

    Marshall R W 1963 Tenth Annual East Coast Conference on Aerospace and Navigational Electronics Baltimore, USA, October 21−23, 1963 p1411

    [2]

    WIrth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24

    [3]

    Ellis T D, Kim Y D 1978 IEEE Trans. Nucl. Sci. 25 1489Google Scholar

    [4]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atom Energ. Sci. Technol. 48 2165Google Scholar

    [5]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 微电子学 44 510

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Microelectronics 44 510

    [6]

    梁堃, 孙鹏, 李沫, 代刚, 李顺, 解磊 2017 原子能科学技术 51 187Google Scholar

    Liang K, Sun P, Li M, Dai G, Li S, Xie L 2017 Atom. Energ. Sci. Technol. 51 187Google Scholar

    [7]

    岳龙, 张战刚, 何玉娟, 郝明明, 雷志峰, 刘远 2017 太赫兹科学与电子信息学报 15 139Google Scholar

    Yue L, Zhang Z G, He Y J, Hao M M, Lei Z F, Liu Y 2017 J. THZ Sci. Electron. Inform. Technol. 15 139Google Scholar

    [8]

    NikZorov A Y, Skorobogatov P K 1996 IEEE Trans. Nucl. Sci. 43 3115Google Scholar

    [9]

    Skorobogatov P K, Nikiforov A Y, Demidov A A 1998 IEEE Trans. Nucl. Sci. 45 2659Google Scholar

    [10]

    Raburn W D, Buchner S P, Kang K, Singh R, Sayers S 1988 IEEE Trans. Nucl. Sci. 35 1512Google Scholar

    [11]

    Johnston A H 1993 IEEE Trans. Nucl. Sci. 40 1694Google Scholar

    [12]

    Ochoa A, Dressendorfer P V 1981 IEEE Trans. Nucl. Sci. 28 4292Google Scholar

    [13]

    Azarewicz J L, Hardwick W H 1982 IEEE Trans. Nucl. Sci. 29 1803Google Scholar

    [14]

    Coppage F N, Allen D J, Dressendorfer P V, Ochoa A, Rauchfuss J, Wrobel T F 1983 IEEE Trans. Nucl. Sci. 30 4122Google Scholar

    [15]

    Johnston A H, Baze M P 1985 IEEE Trans. Nucl. Sci. 32 4017

    [16]

    Plaag R E, Baze M P, Johnston A H 1988 IEEE Trans. Nucl. Sci. 35 1563Google Scholar

    [17]

    Johnston A H, Plaag R E, Baze M P 1989 IEEE Trans. Nucl. Sci. 36 2229Google Scholar

    [18]

    许献国, 杨怀民, 胡健栋 2004 核电子学与探测技术 24 674Google Scholar

    Xu X G, Yang H M, Hu J D 2004 Nucl. Electron. Detect. Technol. 24 674Google Scholar

    [19]

    许献国, 徐曦, 胡健栋, 赵汝清 2005 强激光与粒子束 17 633

    Xu X G, Xu X, Hu J D, Zhao R Q 2005 High Pow. Las. Part. Beam. 17 633

  • [1] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [2] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [3] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇. 典型模拟电路低剂量率辐照损伤增强效应的研究与评估.  , 2018, 67(9): 096101. doi: 10.7498/aps.67.20180027
    [4] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨.  , 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [5] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究.  , 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [6] 郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹. 超深亚微米互补金属氧化物半导体器件的剂量率效应.  , 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [7] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响.  , 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [8] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达.  , 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [9] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究.  , 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [10] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究.  , 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [11] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理.  , 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [12] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响.  , 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [13] 左言磊, 曾小明, 黄小军, 赵磊, 王逍, 周凯南, 张颖, 黄征. 大型短脉冲激光装置中脉冲前沿畸变效应的研究.  , 2009, 58(12): 8264-8270. doi: 10.7498/aps.58.8264
    [14] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [15] 牛燕雄, 黄 峰, 段晓峰, 汪岳峰, 张 鹏, 何琛娟, 禹 晔, 姚建铨. 脉冲激光对类金刚石(DLC)薄膜的热冲击效应研究.  , 2005, 54(10): 4816-4821. doi: 10.7498/aps.54.4816
    [16] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜.  , 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [17] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理.  , 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [18] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应.  , 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
    [19] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究.  , 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
    [20] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应.  , 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
计量
  • 文章访问数:  8950
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-23
  • 修回日期:  2019-03-15
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map