-
云层、气溶胶和大气分子是大气环境的主要组成部分. 本文基于逐次散射法求解辐射传输方程, 建立了复杂大气背景下机载无线光通信终端与地空无人机目标之间的激光传输模型. 考虑真实大气背景中卷云、大气分子和气溶胶存在的情况下, 数值计算了1.55 μm激光经机载通信终端发出后通过大气背景的直接传输和一阶散射传输后接收功率随无人机目标高度的变化关系, 分析了飞机在云上、云中和云下以及卷云冰晶粒子有效半径、飞机与无人机之间的水平距离对接收激光信号传输功率的影响. 数值结果表明: 激光通过卷云传输的功率很大程度上取决于飞机在云上、云下或云中的位置; 飞机与无人机目标之间的水平距离和卷云冰晶粒子的有效半径对激光直接传输和一阶散射传输影响较大; 与云上大气相比, 云下的大气分子和气溶胶对激光有较大的衰减. 本文工作可为进一步开展地空链路上复杂大气背景对机载与低空无人机目标激光通信实验、无人机编队、指挥和组网技术的研究提供理论支撑.Clouds, aerosols and atmospheric molecules are major components of the atmosphere. In the fields of atmospheric physics such as target detection, wireless optical communication and remote sensing, these atmospheric components have a strong attenuation effect on laser transmission. Based on the successive scattering method for solving the radiative transfer equation, the laser transmission model between airborne wireless optical communication terminal and ground-to-air unmanned aerial vehicle (UAV) target in complex atmospheric background is established in this paper. Considering the fact that cirrus cloud, atmospheric molecules and aerosols exist in the real atmospheric background, the variations of direct transmission power, first-order scattering transmission power of 1.55 μm laser emitted by the airborne wireless optical communication terminal with UAV target height are calculated numerically under complex atmospheric background. The effects of the aircraft located at different locations, effective radius of ice crystal particles in cirrus cloud, as well as the horizontal distance between the aircraft and UAV target on received laser transmission power are also analyzed. In the first three examples (i.e., aircraft is above, below, and inside cirrus cloud), laser direct transmission power (LDTP) is much larger than first-order scattering transmission power (FSTP); when the UAV target rises into the cloud, the FSTP is significantly enhanced as a result of the effect of diffraction light. The fourth example is for calculating the variations of LDTP and FSTP with UAV target height for different effective radii of ice crystals. The results show that the LDTP decreases with the increase of effective radius, whereas the FSTP presents an opposite scenario. The fifth example is for calculating the variations of LDTP and FSTP with UAV target height for different horizontal distances. The results show that the LDTP and FSTP decrease with the increase of the horizontal distance, which is obviously realistic. In summary, it is concluded that the laser transmitted power through cirrus clouds is strongly dependent on aircraft position: above, below, or inside cirrus cloud; the horizontal distance between the aircraft and UVA target, and effective radii of ice crystals have great influences on LDTP and FSTP. Compared with the atmosphere above the clouds, the molecules and aerosols below the clouds make the laser power have a strong attenuation. The results given in this paper provide theoretical support for further studying the laser communication experiment in ground-to-air links, UAV formation, command and networking technology in complex atmospheric background.
-
Keywords:
- cirrus cloud /
- aerosols /
- atmospheric molecules /
- laser propagation /
- unmanned aerial vehicle
[1] 石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页
Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)
[2] Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar
[3] Baran A J 2012 Atmos. Res. 112 45Google Scholar
[4] 柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页
Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)
[5] 王明军 2008 博士学位论文 (西安: 西安电子科技大学)
Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)
[6] 刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001
Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001
[7] 廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页
Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)
[8] Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar
[9] 李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611
Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611
[10] 胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar
Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar
[11] Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar
[12] Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar
[13] Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar
[14] Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar
[15] Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124
[16] Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar
[17] 王红霞, 竹有章, 田涛, 李爱君 2013 62 024214Google Scholar
Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar
[18] Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar
[19] Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar
[20] 杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006
Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006
[21] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)
[22] 赵少卿, 张雏 2013 激光与光电子学进展 50 110101
Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101
[23] Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页
Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)
[24] Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页
Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)
[25] Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273
[26] Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar
[27] Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar
[28] Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar
[29] Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar
[30] Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460
[31] Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar
[32] 王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页
Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)
-
-
[1] 石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页
Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)
[2] Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar
[3] Baran A J 2012 Atmos. Res. 112 45Google Scholar
[4] 柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页
Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)
[5] 王明军 2008 博士学位论文 (西安: 西安电子科技大学)
Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)
[6] 刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001
Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001
[7] 廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页
Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)
[8] Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar
[9] 李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611
Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611
[10] 胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar
Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar
[11] Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar
[12] Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar
[13] Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar
[14] Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar
[15] Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124
[16] Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar
[17] 王红霞, 竹有章, 田涛, 李爱君 2013 62 024214Google Scholar
Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar
[18] Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar
[19] Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar
[20] 杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006
Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006
[21] 饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页
Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)
[22] 赵少卿, 张雏 2013 激光与光电子学进展 50 110101
Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101
[23] Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页
Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)
[24] Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页
Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)
[25] Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273
[26] Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar
[27] Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar
[28] Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar
[29] Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar
[30] Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460
[31] Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar
[32] 王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页
Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)
计量
- 文章访问数: 8644
- PDF下载量: 101
- 被引次数: 0