搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三明治结构graphene-2Li-graphene的储氢性能

周晓锋 方浩宇 唐春梅

引用本文:
Citation:

三明治结构graphene-2Li-graphene的储氢性能

周晓锋, 方浩宇, 唐春梅

Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene

Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei
PDF
HTML
导出引用
  • 本文使用密度泛函理论中的广义梯度近似对扩展三明治结构graphene-2Li-graphene的几何结构、电子性质和储氢性能进行计算研究. 计算得知: 位于单层石墨烯中六元环面心位上方的单个Li原子与基底之间的结合能最大(1.19 eV), 但小于固体Li的实验内聚能(1.63 eV), 然而, 在双层石墨烯之间的单个Li原子与基底的结合能增加到3.41 eV, 远大于固体Li的实验内聚能, 因此位于双层石墨烯之间的多个Li原子不会成簇, 有利于进一步储氢. 扩展三明治结构graphene-2Li-graphene中每个Li原子最多可以吸附3个H2分子, 储氢密度高达10.20 wt.%, 超过美国能源部制定的5.5 wt.%的目标. 该体系对1—3 个H2分子的平均吸附能分别为0.37, 0.17和0.12 eV, 介于物理吸附和化学吸附(0.1—0.8 eV)之间, 因此该体系可以实现常温常压下对H2的可逆吸附. 通过对态密度分析可知, 每个Li原子主要通过电场极化作用吸附多个H2分子. 动力学和巨配分函数计算表明graphene-2Li-graphene结构对H2分子具有良好的可逆吸附性能. 该研究可以为开发良好的储氢材料提供一个好的研究思路, 为实验工作提供理论依据.
    The growth of population and the limited supply of fossil fuels have forced the world to seek for new kinds of alternative energy sources which are abundant, renewable, efficient, secure and pollution-free. In this regard, hydrogen is generally considered as a potential candidate. However, it is a great challenge to find hydrogen storage materials with large hydrogen gravimetric density under ambient thermodynamic conditions. The most effective way to improve the hydrogen storage capacity is to decorate the pure nanomaterials with transition metals, alkaline metals, and alkaline earth metals. The generalized gradient approximation based on density functional theory is used to study the hydrogen storage capacity of the expanded sandwich structure graphene-2Li-graphene. It is calculated that the structure with the Li atom located above the face site of the hexagonal ring of the graphene has the maximum binding energy (1.19 eV), which is less than the experimental cohesive energy of bulk Li (1.63 eV). However, the calculated binding energy values of the Li atom to the upper and lower graphene layer are both 3.43 eV, which is much larger than the experimental cohesive energy value of bulk Li, so it can prevent the Li atoms from clustering between graphene layers. Each Li atom in the graphene-2Li-graphene structure can adsorb 3 H2 molecules at most. Thus, the hydrogen gravimetric density of graphene-2(Li-3H2)-graphene is 10.20 wt.%, which had far exceeded the gravimetric density of the target value of 5.5 wt.% by the year 2017 specified by the US Department of Energy. The average adsorption energy values of H2 adsorbed per Li are 0.37, 0.17, and 0.12 eV respectively for 1−3 H2 molecules, which are between the physical adsorption and chemical adsorption(0.1−0.8 eV), therefore, it can realize the reversible adsorption of hydrogen. Each Li atom can adsorb 3 H2 molecules at most by the electronic polarization interaction. The dynamic calculations and GFRF calculations show that the interlayer Li atom doped double-layer graphene has good reversible adsorption performance for hydrogen. This research can provide a good research idea for developing good hydrogen storage materials and theoretical basis for experimental worker. These findings can suggest a way to design hydrogen storage materials under the near-ambient conditions.
      通信作者: 周晓锋, xfzhouphy@263.net ; 唐春梅, tcmnj@163.com
    • 基金项目: 中央高校基本科研业务费(批准号:2016B01914,2018B19414)、水利科技创新项目(批准号:2015087)、江苏省自然科学基金(批准号:BK20161501)和江苏省六大人才高峰项目(批准号:2015-XCL-010)资助的课题.
      Corresponding author: Zhou Xiao-Feng, xfzhouphy@263.net ; Tang Chun-Mei, tcmnj@163.com
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities,China (Grant Nos. 2016B01914,2018B19414), the Water Science Innovation Project of Jiangsu Province, China (Grant No. 2015087), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010).
    [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    Chandrakumar K R S, Ghosh S K 2008 Nano Lett. 8 13Google Scholar

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'keeffe M, Yaghi O M 2003 Science 300 1127Google Scholar

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422Google Scholar

    [5]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [6]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [7]

    Kim D, Lee S, Hwang Y, Yun K H, Chung Y C 2014 Int. J. Hydrogen Energy 39 13189Google Scholar

    [8]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrogen Energy 39 17104Google Scholar

    [9]

    Seenithurai S, Pandyan R K, Kumar S V, Saranya C, Mahendran M 2014 Int. J. Hydrogen Energy 39 11016Google Scholar

    [10]

    Chen L, Zhang Y, Koratkar N, Jena P, Nayak S K 2008 Phys. Rev. B 77 033405

    [11]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco M, Zuttel A 2013 J. Phys. Chem. C 117 22598Google Scholar

    [12]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [13]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theor. Comput. 8 99

    [14]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [15]

    Wilkinson G, Rosenblum M, Whiting M C, Woodward R B 1952 J. Am. Chem. Soc. 74 2125Google Scholar

    [16]

    Kubas G J 2001 Kluwer Academic (New York: Plenum Publishing)

    [17]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [18]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theory Comput. 8 99

    [19]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [20]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [21]

    Zhang Q Y, Tang C M, Zhu W H, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [22]

    Chang L T, Wei C, Xiao H T 2006 Chin. Phys. 15 2718Google Scholar

    [23]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213Google Scholar

    [24]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [25]

    Ma L, Zhang J M, Xu K W 2014 Appl. Surf. Sci. 292 921Google Scholar

    [26]

    Gao Y, Wu X, Zeng X C 2014 J. Mater. Chem. A 2 5910Google Scholar

    [27]

    Park J, Burova S, Rodgers A S, Lin M C 1999 J. Phys. Chem. A 103 9036Google Scholar

    [28]

    Abad E, Dappe Y J, Martínez J I, Flores F, Ortega J 2011 J. Chem. Phys. 134 044701Google Scholar

    [29]

    Pliva J, Johns J W C, Goodman L 1991 J. Mol. Spectrosc. 148 427Google Scholar

    [30]

    Toyoda K, Nakano Y, Hamada I, Lee K, Yanagisawa S, Morikawa Y 2009 Surf. Sci. 603 2912Google Scholar

    [31]

    Wang X B, Tang C M, Zhu W H, Zhou X F, Zhou Q H, Cheng C 2018 J. Phys. Chem. C 122 9654Google Scholar

    [32]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [33]

    Wu G, Wang J, Zhang X, Zhu L 2009 J. Phys. Chem. C 113 7052Google Scholar

    [34]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社)

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese)

  • 图 1  (a)苯环中3种不等价位置; (b) Li原子位于苯环面心位上方的优化结构; (c) C6H6-Li-C6H6势能面扫描曲线和最稳定的C6H6-Li-C6H6三明治结构

    Fig. 1.  (a) Three unequal positions in benzene ring; (b) the optimized structure of the benzene ring with the Li atom located above the face site of the hexagonal ring; (c) potential energy surface scanning curve of C6H6-Li-C6H6 and the most stable sandwich structure of C6H6-Li-C6H6.

    图 2  (a) 单层石墨烯的2 × 3晶胞中Li原子的6个位置; 2个Li原子分别位于(b) ①④组合; (c) ①⑤组合; (d) ①③组合; (e) ①⑥组合; 3个Li原子分别位于(f) ①④⑤组合; (g) ①②⑥组合; (h) 2个Li原子掺杂的最稳定双层石墨烯结构graphene-2Li-graphene

    Fig. 2.  (a) 6 positions of the Li atom in the 2 × 3 unit cell of monolayer graphene; two Li atoms are located at (b) ①④ combination; (c) ①⑤ combination, (d) ①③ combination; (e) ①⑥ composition; three Li atoms are located in (f) ①④⑤ combination; (g) ①②⑥ combination; (h) the most stable graphene-2Li-graphene double-layer graphene structure doped by two Li atoms.

    图 3  graphene-2Li-graphene 的2 × 3晶胞中每个Li原子分别吸附1—4个H2分子的结构图

    Fig. 3.  The structural of the 2 × 3 unit cell of graphene-2Li-graphene with each Li atom adsorbed by 1−4 H2 molecules.

    图 4  不同结构中Li原子或H2分子的态密度图 (a)单独的Li原子; (b) graphene-2Li-graphene中Li原子; (c) graphene-2(Li-H2)-graphene中Li原子; (d) graphene-2(Li-3H2)-graphene中Li原子; (e) 单独的H2分子; (f) graphene-2Li-graphene中graphene; (g) graphene-2(Li-H2)-graphene中H2分子; (h) graphene-2(Li-3H2)-graphene中H2分子

    Fig. 4.  The PDOS of Li atom or H2 molecules: (a) Isolated Li atom; (b) the Li atom in graphene-2Li-graphene; (c) the Li atom in graphene-2(Li-H2)-graphene; (d) the Li atom in graphene-2(Li-3H2)-graphene; (e) isolated H2 molecules; (f) the graphene in graphene-2Li-graphene; (g) the H2 molecules in graphene-2(Li-H2)-graphene; (h) the H2 molecules in graphene-2(Li-3H2)-graphene.

    图 5  graphene-2(Li-3H2)-graphene在77和300 K下5 ps之后的动力学结构图

    Fig. 5.  The structures of graphene-2(Li-3H2)-graphene at 77 and 300 K after 5 ps dynamic times.

    表 1  扩展三明治结构graphene-2(Li-nH2)-graphene[G-2(Li-nH2)-G)](n = 1—4)中的H2分子的Ead, Er, Li和H的平均bader电荷(QLiQH), 双层石墨烯的层间距(DG-G)

    Table 1.  The Ead and Er of H2 molecules average bader charge of Li and H (QLi and QH), interlayer distance of double-layer graphene (DG-G) in the expanded sandwich structure graphene-2(Li-nH2)-graphene[G-2(Li-nH2)-G)](n = 1—4).

    G-2Li-GG-2(Li-H2)-GG-2(Li-2H2)-GG-2(Li-3H2)-GG-2(Li-4H2)-G
    Ead/eV0.370.170.120.06
    Er/eV0.190.190.10–0.08
    QLi/e0.990.620.310.020.01
    QH/e0.200.180.160.12
    DG-G3.693.844.404.904.93
    下载: 导出CSV
    Baidu
  • [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    Chandrakumar K R S, Ghosh S K 2008 Nano Lett. 8 13Google Scholar

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'keeffe M, Yaghi O M 2003 Science 300 1127Google Scholar

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422Google Scholar

    [5]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [6]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [7]

    Kim D, Lee S, Hwang Y, Yun K H, Chung Y C 2014 Int. J. Hydrogen Energy 39 13189Google Scholar

    [8]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrogen Energy 39 17104Google Scholar

    [9]

    Seenithurai S, Pandyan R K, Kumar S V, Saranya C, Mahendran M 2014 Int. J. Hydrogen Energy 39 11016Google Scholar

    [10]

    Chen L, Zhang Y, Koratkar N, Jena P, Nayak S K 2008 Phys. Rev. B 77 033405

    [11]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco M, Zuttel A 2013 J. Phys. Chem. C 117 22598Google Scholar

    [12]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [13]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theor. Comput. 8 99

    [14]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [15]

    Wilkinson G, Rosenblum M, Whiting M C, Woodward R B 1952 J. Am. Chem. Soc. 74 2125Google Scholar

    [16]

    Kubas G J 2001 Kluwer Academic (New York: Plenum Publishing)

    [17]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [18]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theory Comput. 8 99

    [19]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [20]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [21]

    Zhang Q Y, Tang C M, Zhu W H, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [22]

    Chang L T, Wei C, Xiao H T 2006 Chin. Phys. 15 2718Google Scholar

    [23]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213Google Scholar

    [24]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [25]

    Ma L, Zhang J M, Xu K W 2014 Appl. Surf. Sci. 292 921Google Scholar

    [26]

    Gao Y, Wu X, Zeng X C 2014 J. Mater. Chem. A 2 5910Google Scholar

    [27]

    Park J, Burova S, Rodgers A S, Lin M C 1999 J. Phys. Chem. A 103 9036Google Scholar

    [28]

    Abad E, Dappe Y J, Martínez J I, Flores F, Ortega J 2011 J. Chem. Phys. 134 044701Google Scholar

    [29]

    Pliva J, Johns J W C, Goodman L 1991 J. Mol. Spectrosc. 148 427Google Scholar

    [30]

    Toyoda K, Nakano Y, Hamada I, Lee K, Yanagisawa S, Morikawa Y 2009 Surf. Sci. 603 2912Google Scholar

    [31]

    Wang X B, Tang C M, Zhu W H, Zhou X F, Zhou Q H, Cheng C 2018 J. Phys. Chem. C 122 9654Google Scholar

    [32]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [33]

    Wu G, Wang J, Zhang X, Zhu L 2009 J. Phys. Chem. C 113 7052Google Scholar

    [34]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社)

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese)

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究.  , 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] 马丽娟, 韩婷, 高升启, 贾建峰, 武海顺. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响.  , 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [4] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能.  , 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [5] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [6] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究.  , 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [9] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能.  , 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [10] 张轶杰, 唐春梅, 高凤志, 王成杰. Li修饰的C6分子对H2O的吸附研究.  , 2014, 63(14): 147401. doi: 10.7498/aps.63.147401
    [11] 赵银昌, 戴振宏, 隋鹏飞, 张晓玲. 二维Li+BC3结构高储氢容量的研究.  , 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [12] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质.  , 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [13] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究.  , 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [14] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究.  , 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [15] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [16] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质.  , 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [17] 刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖. 单壁BN纳米管和碳纳米管物理吸附储氢性能的理论对比研究.  , 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [18] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [20] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
计量
  • 文章访问数:  7718
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 修回日期:  2018-12-28
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回
Baidu
map