搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

读出效率对光与原子纠缠产生的影响

王圣智 温亚飞 张常睿 王登新 徐忠孝 李淑静 王海

引用本文:
Citation:

读出效率对光与原子纠缠产生的影响

王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海

Dependence of performance character of photon-atom entanglement source on retrieval efficiency

Wang Sheng-Zhi, Wen Ya-Fei, Zhang Chang-Rui, Wang Deng-Xin, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai
PDF
HTML
导出引用
  • 在光与原子纠缠态产生中, 自旋波读出效率是影响纠缠质量的一个重要因素. 本文在实验和理论上研究了读出效率与纠缠质量(Bell参量)的关系. 实验上利用87Rb冷原子系综中的自发Raman散射过程产生了光与原子量子纠缠. 通过改变读光功率或OD (光学厚度), 实现了读出效率的变化. 在此基础上, 研究了光与原子纠缠质量(Bell参量)随读出效率变化的关系. 该实验将为高保真度的光与原子纠缠产生提供帮助.
    The photon-atom interface is a basic component of quantum repeater, quantum network, and linear optical quantum computing. Different approaches have been tested in the last decade to develop quantum interface, such as quantum dots, single atoms and ions, color centers and cold atomic ensemble. In the cold atomic ensemble, a normal way to produce photon-atom interface is the Duan-Lukin-Cirac-Zoller (DLCZ) protocol. Used in the DLCZ protocol is an atomic ensemble that can emit single photons while creating a single atomic excitation, which is stored in the ensemble. The atomic excitation can be converted into a photon due to the collective interference. The influences of the retrieval efficiency on the atom-photon entanglement source have been studied in various experiments. But no one has studied the retrieval efficiency threshold of entanglement generation. In our experiment we study the retrieval efficiency dependence on read power and OD. Setting the power of the repump light beam to be 12.2 mW, 5.0 mW, 2.0 mW, 0.5 mW and 0.3 mW, OD of the cold atom ensemble is measured to be 20, 17, 10, 2, and 1, respectively. As we expected, the retrieval efficiency increases with increasing OD value and read power, the curve shows that the retrieval efficiency increases sharply with increasing the OD value and read power, then after a while slowly increases with increasing the OD values and read power. Then we measure the Bell parameter with increasing the retrieval efficiency by increasing the read power. It shows that the Bell parameter sharply increases for retrieval efficiency values ranging from 0 to 3%, but changes very small for retrieval efficiency values ranging from 3% to 18.3%. The maximum Bell parameter is 2.6. We further analysis the result, finding that the Bell parameter can be expressed as $S = \dfrac{{{S_{{\rm{MAX}}}}r}}{{(1 + 2\chi )r + 2B}}$. Fitting parameters to the curve are $\chi$= 1%, B = 0.073%. To avoid of multi-excitation the write power kept low that $\chi$ at 1% level. Then we can find out from the function that the signal-to-noise ratio is bigger than 6∶1 the Bell parameter will reach 2. The theoretical analysis and experimental results fit very well. So the further reason that alter the Bell parameter is the signal-to-noise ratio. We should decrease the noise while increasing the retrieval efficiency. This paper will help with rise the quality of entanglement generation through photon-atom interface.
      通信作者: 徐忠孝, xuzhongxiao@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号: 11475109, 11274211)、国家自然科学基金青年科学基金(批准号: 11604191)、山西省应用基础研究计划(批准号: 201601D202007)和山西省“1331工程”重点学科建设计划(批准号:133KSC)资助的课题.
      Corresponding author: Xu Zhong-Xiao, xuzhongxiao@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604191), the Applied Basic Research Program of Shanxi Province, China (Grant No. 201601D202007), and the Shanxi Provincial Fund for “1331 Project” Key Subjects Construction, China (Grant No. 1331KSC).
    [1]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [2]

    Hensen B, Bernien H, Dreau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F, Schouten R N, Abellan C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682Google Scholar

    [3]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [4]

    Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar

    [5]

    Rosenfeld W, Burchardt D, Garthoff R, Redeker K, Ortegel N, Rau M, Weinfurter H 2017 Phys. Rev. Lett. 119 010402Google Scholar

    [6]

    Blinov B B, Moehring D L, Duan L M, Monroe C 2004 Nature 428 153Google Scholar

    [7]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [8]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [9]

    van der Wal C H, Eisaman M D, André A, Walsworth R L, Phillips D F, Zibrov A S, Lukin M D 2003 Science 301 196Google Scholar

    [10]

    Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [11]

    Yan H, Zhang S, Chen J F, Loy M M, Wong G K, Du S 2011 Phys. Rev. Lett. 106 033601Google Scholar

    [12]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [13]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photon. 9 332Google Scholar

    [14]

    Xu Z X, Wu Y L, Liu H L, Li S J, Wang H 2013 Phys. Rev. A 88 013423Google Scholar

    [15]

    Jenkins S D, Matsukevich D N, Chanelière T, Kuzmich A, Kennedy T A B 2006 Phys. Rev. A 73 021803Google Scholar

    [16]

    Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A, Kuzmich A 2006 Phys. Rev. Lett. 96 033601Google Scholar

    [17]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033804Google Scholar

    [18]

    Felinto D, Chou C W, de Riedmatten H, Polyakov S V, Kimble H J 2015 Phys. Rev. A 72 053809

    [19]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [20]

    de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [21]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2008 Nat. Phys. 5 95

    [22]

    张常睿, 王圣智, 徐忠孝, 李淑静, 王海 2018 量子光学学报 24 333

    Zhang C R, Wang S Z, Xu Z X, Li S J, Wang H 2018 Acta Sinica Quantum Optica 24 333

    [23]

    Lettner M, Mucke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Durr S, Rempe G 2011 Phys. Rev. Lett. 106 210503Google Scholar

    [24]

    Fu Z, Wang P, Chai S, Huang L, Zhang J 2011 Phys. Rev. A 84 043609Google Scholar

  • 图 1  实验能级图 (a)和(b)分别为自发拉曼散射的写过程和读过程, σ+ (σ)代表右旋圆偏振(左旋圆偏振)的斯托克斯光场和反斯托克斯光场; W表示写光, R表示读光

    Fig. 1.  Relevant 87Rb atomic levels: (a) and (b) are writing process and reading process of the SRS process. σ+ (σ) represents right (left) polarization of emitted photon. W (R) represents writing(reading) field.

    图 2  实验装置, 其中PBS为偏振分束棱镜, SMF为单模光纤, SPD为单光子探测器, $\frac{\lambda }{2}$为二分之一波片, $\frac{\lambda }{4}$为四分之一波片, Filter为滤波器

    Fig. 2.  Experimental setup. PBS, polarization beam splitter; SMF, single mode fiber; SPD, single photon detector; $\frac{\lambda }{2}$, half wave plate; $\frac{\lambda }{4}$, quarter wave plate; Filter, F-P etalon.

    图 3  实验时序图 (图中Trig表示触发信号, C表示态清洗过程, W和R分别代表写过程与读过程, MOT代表冷原子制备过程)

    Fig. 3.  Time sequence of experiment (Trig represents the trigger signal, C represents the state cleaning process, W and R represent the writing and reading process, and MOT represents the cold atom preparation process).

    图 4  读出效率随光学厚度的变化

    Fig. 4.  The retrieval efficiency as the function of optical depth.

    图 5  读出效率及$\scriptstyle N_{\rm AS}$随读光功率变化

    Fig. 5.  The retrieval efficiency and $\scriptstyle N_{\rm AS}$ as the function of power of read light field.

    图 6  Bell参量S随读出效率的变化

    Fig. 6.  The Bell parameter S as the function of quantum retrieval efficiency.

    Baidu
  • [1]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [2]

    Hensen B, Bernien H, Dreau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F, Schouten R N, Abellan C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682Google Scholar

    [3]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [4]

    Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar

    [5]

    Rosenfeld W, Burchardt D, Garthoff R, Redeker K, Ortegel N, Rau M, Weinfurter H 2017 Phys. Rev. Lett. 119 010402Google Scholar

    [6]

    Blinov B B, Moehring D L, Duan L M, Monroe C 2004 Nature 428 153Google Scholar

    [7]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [8]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [9]

    van der Wal C H, Eisaman M D, André A, Walsworth R L, Phillips D F, Zibrov A S, Lukin M D 2003 Science 301 196Google Scholar

    [10]

    Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [11]

    Yan H, Zhang S, Chen J F, Loy M M, Wong G K, Du S 2011 Phys. Rev. Lett. 106 033601Google Scholar

    [12]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [13]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photon. 9 332Google Scholar

    [14]

    Xu Z X, Wu Y L, Liu H L, Li S J, Wang H 2013 Phys. Rev. A 88 013423Google Scholar

    [15]

    Jenkins S D, Matsukevich D N, Chanelière T, Kuzmich A, Kennedy T A B 2006 Phys. Rev. A 73 021803Google Scholar

    [16]

    Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A, Kuzmich A 2006 Phys. Rev. Lett. 96 033601Google Scholar

    [17]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033804Google Scholar

    [18]

    Felinto D, Chou C W, de Riedmatten H, Polyakov S V, Kimble H J 2015 Phys. Rev. A 72 053809

    [19]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [20]

    de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [21]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2008 Nat. Phys. 5 95

    [22]

    张常睿, 王圣智, 徐忠孝, 李淑静, 王海 2018 量子光学学报 24 333

    Zhang C R, Wang S Z, Xu Z X, Li S J, Wang H 2018 Acta Sinica Quantum Optica 24 333

    [23]

    Lettner M, Mucke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Durr S, Rempe G 2011 Phys. Rev. Lett. 106 210503Google Scholar

    [24]

    Fu Z, Wang P, Chai S, Huang L, Zhang J 2011 Phys. Rev. A 84 043609Google Scholar

  • [1] 温亚飞, 田剑锋, 王志强, 庄园园. 冷原子系综中光纤腔增强且高保真度的光学存储.  , 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [2] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响.  , 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [3] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究.  , 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [4] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究.  , 2021, (): . doi: 10.7498/aps.70.20210881
    [5] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海. 原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验.  , 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [6] 刘艳红, 周瑶瑶, 闫智辉, 贾晓军. 利用自发拉曼散射建立三个原子节点的纠缠.  , 2021, 70(9): 094201. doi: 10.7498/aps.70.20201299
    [7] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响.  , 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [8] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量.  , 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [9] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵.  , 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [10] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究.  , 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [11] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究.  , 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [12] 赵岫鸟, 孙建安, 豆福全. 外场形式对超冷原子-多聚物分子转化效率的影响.  , 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [13] 李浩珍, 谢双媛, 许静平, 羊亚平. 结构库中二能级原子与自发辐射场间的纠缠演化.  , 2014, 63(12): 124201. doi: 10.7498/aps.63.124201
    [14] 邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华. 基于增强拉曼散射的光子-原子双模压缩态的实现.  , 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [15] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态.  , 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [16] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [17] 贾振强, 张林. 约束冷原子气体的高增益Raman散射光谱.  , 2012, 61(4): 043206. doi: 10.7498/aps.61.043206
    [18] 郭亮, 梁先庭. T-C模型中光场和原子以及原子与原子之间的纠缠演化.  , 2009, 58(1): 50-54. doi: 10.7498/aps.58.50
    [19] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持.  , 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [20] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性.  , 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
计量
  • 文章访问数:  7389
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2018-11-07
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map