-
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.Studies on quantum dots (QDs) provide great opportunities in single photon detection as well as single circular polarized photon emission, which are the key technology for future quantum information processing. For single photon detection, the quantum-dot-resonant-tunneling-diode (QD-RTD) is evaluated as one of the most promising scheme but still suffering from the ultralow working temperature (~5 K) and lack the capability to discriminate photon numbers. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual QDs coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. On the other hand, we firstly performed the magneto-optical studies on single InGaAs/GaAs self-assembled QDs. We observed the exciton Zeeman splitting and diamagnetic shift of a single QD under magnetic field, and the exciton g factor and diamagnetic coefficient was extracted by fitting the magnetic field dependent PL energies. By comparing with theories, we discussed on the effect of QD size, shape and composition on these two parameters. Based on these work, we investigated the single QD exciton-cavity mode coupling effect under external magnetic field. By first time we observed the interaction of Zeeman splitted exciton spin states with the cavity mode and realized the selective enhancement of the SE rate of the exciton state with specific spin configuration by means of magnetic manipulation of Purcell effect. In this sense, single QD emission with higher circular polarization degree under non-polarized excitation was realized. Our results have high potential to open up a way to novel quantum light sources and quantum information processing applications based on cavity quantum electrodynamics effects.
-
Keywords:
- photon detection /
- single photon source /
- quantum dot /
- micro-cavity
[1] Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503
[2] Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102
[3] Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217
[4] Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329
[5] Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
[6] Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594
[7] Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104
[8] Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32
[9] Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50
[10] Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968
[11] Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58
[12] Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618
[13] Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373
[14] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174
[15] Hadfield R H 2009 Nature Photon. 3 696
[16] Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405
[17] Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401
[18] Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503
[19] Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389
[20] Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113
[21] Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114
[22] Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455
-
[1] Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503
[2] Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102
[3] Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217
[4] Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329
[5] Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
[6] Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594
[7] Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104
[8] Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32
[9] Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50
[10] Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968
[11] Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58
[12] Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618
[13] Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373
[14] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174
[15] Hadfield R H 2009 Nature Photon. 3 696
[16] Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405
[17] Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401
[18] Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503
[19] Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389
[20] Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113
[21] Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114
[22] Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455
计量
- 文章访问数: 6903
- PDF下载量: 175
- 被引次数: 0