-
为准确有效地预测微波器件的微放电阈值,提出了一种可以同时考虑同轴结构微放电过程中单边与双边碰撞的统计理论稳态模型.考虑到同轴结构中场分布的非均匀性以及二次电子的出射随机性,采用微扰法近似推导电子轨迹表达式,并基于电子出射速度与渡越时间之间的隐式关联性,构建用于计算同轴结构内、外导体处电子渡越时间概率分布的联合概率密度函数.通过电子出射相位分布的稳态假设,推导用于描述同轴结构中微放电倍增过程的稳态积分方程组,并提出一种通用的联立迭代求解方法.采用稳态模型分别计算银、铜、铝与阿洛丁等工程常用镀膜材料的同轴传输线微放电敏感区域,并分析了同轴传输线径比对微放电阈值的影响.与欧空局的微放电实验结果对比表明,稳态模型能够准确有效地计算同轴传输线的微放电阈值,同时发现平行平板与同轴结构微放电的敏感曲线之间存在显著差异.研究提供了一种精确有效的同轴传输线微放电阈值分析方法,并为实际工程中"免微放电"微波器件的设计与优化提供参考与依据.Multipactor breakdown is a detrimental electromagnetic phenomenon caused by resonant secondary electron emissions synchronizing with field oscillation, which frequently takes place in powerful microwave devices and accelerating structures. Regarded as the principal failure mode of space microwave systems, multipactor may cause the performance to degenerate or even hardware operation to deteriorate catastrophically, thus multipactor becomes a major limitation in promoting the further development of space communication technology. Meanwhile, higher power capacity and volume integration accordingly lead to continuously growing multipactor hazard. In order to prevent multipactor from occurring, the accurate predictive technique to determine multipactor susceptibility has become a key issue for the mechanical design and performance optimization of microwave devices in the ground stage. Compared with the existing approaches to investigating the multipactor, statistical theories are able to conduct multipactor threshold calculation and mechanism analysis, with the stochastic nature of secondary emission fully considered from the probabilistic perspective. Currently, stationary statistical theory of multipactor has been developed for efficient multipactor threshold analysis of the parallel-plate geometry. However, it has not been further extended to the coaxial geometry which is commonly involved in radio frequency (RF) systems. For this reason, the stationary statistical modeling of the coaxial multipactor with all influencing factors considered is detailed in this paper. Due to the field nonuniformity and the secondary emission randomness, analytic equation of electron trajectories in the coaxial geometry is approximately derived by using the perturbation approach. Based on the implicit correlation between electron emission velocity and transit time, the joint probability density function is constructed for the calculation of the probability density distribution of electron transit time. Afterwards, a system of integral equations for depicting electron multiplication process in the coaxial geometry is formulated and solved with a novel and general iteration method. Finally, this stationary statistical theory is applied to the full multipactor susceptibility chart of coaxial transmission lines with typical coating materials in space engineering, such as silver, copper, alumina and alodine. A comparison shows that the calculation results are in reasonable agreement with the experimental measurements provided by the Europe Space Agent. What is more, there exists significant difference between multipactor susceptibility curves of the parallel-plate geometry and the coaxial geometry. This research is of great significance for optimizing the mechanism design and material selection of multipactor-free microwave devices.
-
Keywords:
- multipactor /
- statistical theory /
- stationary modeling /
- coaxial geometry
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Jing C, Gold S H, Fischer R, Gai W 2016 Appl. Phys. Lett. 108 193501
[4] González-Iglesias D, Pérez A M, Monerris O, Anza S, Vague J, Gimeno B, Boria V E, Gomez Á, Vegas A, Díaz E 2016 Progress in Electromagnetic Research Symposium Shanghai China, August 8-11, 2016 pp4401-4405
[5] Song W, Zhang Z Q, Li J W, Zhang Q Y, Cai L B 2013 Appl. Phys. Lett. 102 013504
[6] Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396
[7] Cui W Z, Zhang H, Li Y, He Y, Wang Q, Zhang H T, Wang H G, Yang J 2018 Chin. Phys. B 27 038401
[8] Sazontov A G, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[9] Sazontov A G, Semenov V, Buyanova M, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 093501
[10] Sazontov A G, Nechaev V E, Vdovicheva N K 2012 IEEE Trans. Plasma Sci. 40 451
[11] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[12] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[13] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[14] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[15] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[16] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63 220205]
[17] Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114
[18] Bai C J, Feng G B, Cui W Z, He Y N, Zhang W, Hu S G, Ye M, Hu T C, Huang G S, Wang Q 2018 Acta Phys. Sin. 67 037902 (in Chinese) [白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪 2018 67 037902]
[19] Ye M, Li Y, He Y N, Daneshmand M 2017 Phys. Plasmas 24 052109
[20] Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702
[21] Lin S, Wang R, Xia N, Li Y D, Liu C L 2018 Phys. Plasmas 25 013536
[22] Lin S, Li Y D, Yan Y J, Qiang W, Bao R, Liu C L 2014 Vacuum Electron. 4 12 (in Chinese) [林舒, 李永东, 闫杨娇, 强文, 保荣, 刘纯亮 2014 真空电子技术 4 12]
[23] Gaponov A, Miller M 1958 Zh. Eksp. Teor. Fiz. 34 242
[24] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[25] Secretariat E 2003 ESA-ESTEC Requirements & Standards Division, Noordwijk, The Netherlands, 2003 ESA-ESTEC, Tech. Rep. ECSS-E-20-01A
[26] Vicente C, Mattes M, Wolk D, Mottet B, Hartnagel H, Mosig J, Raboso D 2005 Microwave Symposium Digest, Long Beach, CA, USA June 17-17, 2005 pp1055-1058
[27] Woo R 1968 J. Appl. Phys. 39 1528
-
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Jing C, Gold S H, Fischer R, Gai W 2016 Appl. Phys. Lett. 108 193501
[4] González-Iglesias D, Pérez A M, Monerris O, Anza S, Vague J, Gimeno B, Boria V E, Gomez Á, Vegas A, Díaz E 2016 Progress in Electromagnetic Research Symposium Shanghai China, August 8-11, 2016 pp4401-4405
[5] Song W, Zhang Z Q, Li J W, Zhang Q Y, Cai L B 2013 Appl. Phys. Lett. 102 013504
[6] Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396
[7] Cui W Z, Zhang H, Li Y, He Y, Wang Q, Zhang H T, Wang H G, Yang J 2018 Chin. Phys. B 27 038401
[8] Sazontov A G, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[9] Sazontov A G, Semenov V, Buyanova M, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 093501
[10] Sazontov A G, Nechaev V E, Vdovicheva N K 2012 IEEE Trans. Plasma Sci. 40 451
[11] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[12] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[13] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[14] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[15] Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105
[16] Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 63 220205]
[17] Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114
[18] Bai C J, Feng G B, Cui W Z, He Y N, Zhang W, Hu S G, Ye M, Hu T C, Huang G S, Wang Q 2018 Acta Phys. Sin. 67 037902 (in Chinese) [白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪 2018 67 037902]
[19] Ye M, Li Y, He Y N, Daneshmand M 2017 Phys. Plasmas 24 052109
[20] Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702
[21] Lin S, Wang R, Xia N, Li Y D, Liu C L 2018 Phys. Plasmas 25 013536
[22] Lin S, Li Y D, Yan Y J, Qiang W, Bao R, Liu C L 2014 Vacuum Electron. 4 12 (in Chinese) [林舒, 李永东, 闫杨娇, 强文, 保荣, 刘纯亮 2014 真空电子技术 4 12]
[23] Gaponov A, Miller M 1958 Zh. Eksp. Teor. Fiz. 34 242
[24] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[25] Secretariat E 2003 ESA-ESTEC Requirements & Standards Division, Noordwijk, The Netherlands, 2003 ESA-ESTEC, Tech. Rep. ECSS-E-20-01A
[26] Vicente C, Mattes M, Wolk D, Mottet B, Hartnagel H, Mosig J, Raboso D 2005 Microwave Symposium Digest, Long Beach, CA, USA June 17-17, 2005 pp1055-1058
[27] Woo R 1968 J. Appl. Phys. 39 1528
计量
- 文章访问数: 5857
- PDF下载量: 51
- 被引次数: 0