搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子照相中基于能量损失的密度重建

陈锋 郑娜 许海波

引用本文:
Citation:

质子照相中基于能量损失的密度重建

陈锋, 郑娜, 许海波

Density reconstruction based on energy loss in proton radiography

Chen Feng, Zheng Na, Xu Hai-Bo
PDF
导出引用
  • 提出了一种质子能量在中高能时利用能量损失进行密度重建的方法,并利用Bethe-Bolch公式给出了利用能量损失进行密度重建的方程及条件.针对1.6 GeV的质子能量,通过定量计算常见材料的阻止本领,得出质子能量在1.451.6 GeV范围内时,材料的阻止本领的变化率小于1%,可近似为常数.最后,通过理论计算和Geant 4模拟,得出质子能量在1.6 GeV时,可以对面密度为113 g/cm2的缩比法国实验客体进行密度重建.
    A method of using energy loss to reconstruct the density is presented with protons at intermediate and high energy for proton radiography, and the equation and condition of density reconstruction are given based on the Bethe-Bolch formula. For the intermediate and high energy proton radiography, the stopping power of material is changed slowly within a certain energy range, and the stopping power can be approximated as a constant, then the multi-material object can be reconstructed by using the energy loss information. In this work, the protons at 1.6 GeV which can be obtained by China Spallation Neutron Source are used in the radiography, and the energy loss information is used in the reconstruction, and the Geant 4 is applied to Monte Carlo simulation. From the theoretical calculation and the Geant4 simulation, it can be seen that when the protons energy ranges from 1.45 GeV to 1.6 GeV the stopping power of material can be approximately constant, and the relative change of material stopping power is less than 1%, thus the stopping power of material is only dependent on the incident proton energy, and the density of the multimaterial object can be reconstructed by the energy loss information. The proton scanning imaging system which can avoid blurring image caused by multiple coulomb scattering at the receiving plane is used in the proton radiography to obtain the energy loss information. In the imaging system, two energy detectors are employed to record the incident energy and exit energy of protons, the object is scanned by the protons with a certain step length, and the object is rotated 180 or 360. The energy loss distribution of the object can be obtained by the scanning imaging system, and the density of the object can be reconstructed by solving corresponding equations. The Geant 4 is used to simulate the proton scanning imaging system. In the simulation, the object is the scaling french test object (FTO) that the areal density is 113 g/cm2, the protons are monoenergetic at 1.6 GeV, the scanning interval is 0.5 mm, and the rotation angle is 0.9. The results of the density reconstruction of the scaling FTO are in good agreement with the true values.
      通信作者: 郑娜, zheng_na@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11675021)、国家自然科学青年科学基金(批准号:11505014)和中国工程物理研究院院长基金(批准号:201402086)资助的课题.
      Corresponding author: Zheng Na, zheng_na@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505014), and the Presidential Foundation of China Academy of Engineering Physics (Grant No. 201402086).
    [1]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627

    [2]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905

    [3]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359

    [4]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319

    [5]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 58 1635]

    [7]

    Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203

    [8]

    Xu H B, Zheng N 2015 Chin. Phys. C 39 078201

    [9]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201

    [10]

    Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 66 184101]

    [11]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401

    [12]

    Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165

    [13]

    Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651

    [14]

    Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003

    [15]

    Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]

    [16]

    Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397

    [17]

    Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25

    [18]

    Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035

    [19]

    Groom D 1993 PDG 06

    [20]

    Bohr N 1948 Freshwater Biol. 44 213

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270

  • [1]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627

    [2]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905

    [3]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359

    [4]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319

    [5]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 58 1635]

    [7]

    Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203

    [8]

    Xu H B, Zheng N 2015 Chin. Phys. C 39 078201

    [9]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201

    [10]

    Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 66 184101]

    [11]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401

    [12]

    Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165

    [13]

    Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651

    [14]

    Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003

    [15]

    Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]

    [16]

    Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397

    [17]

    Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25

    [18]

    Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035

    [19]

    Groom D 1993 PDG 06

    [20]

    Bohr N 1948 Freshwater Biol. 44 213

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟.  , 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 李颖涵, 安竹, 朱敬军, 李玲. keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究.  , 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [5] 陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥. 高能质子照相中基于角度准直器设计的理论研究.  , 2020, 69(3): 032901. doi: 10.7498/aps.69.20191691
    [6] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术.  , 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [7] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究.  , 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [8] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟.  , 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法.  , 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [10] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [14] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究.  , 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究.  , 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用.  , 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  5853
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-07-23
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map