搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能质子照相中基于角度准直器设计的理论研究

陈锋 许海波 郑娜 贾清刚 佘若谷 李兴娥

引用本文:
Citation:

高能质子照相中基于角度准直器设计的理论研究

陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥

Theoretical study of angle-cut collimator based design in high-energy proton radiography

Chen Feng, Xu Hai-Bo, Zheng Na, Jia Qing-Gang, She Ruo-Gu, Li Xing-E
PDF
HTML
导出引用
  • 角度准直器在高能质子照相中有着重要作用, 既可以利用准直器提高图像对比度, 又能通过二次成像实现材料诊断及密度重建, 因此减小通过准直器后通量值的误差具有重要意义. 本文通过理论分析, 提出了一种高能质子照相中准直器设计的方法, 通过Geant4程序建立了1.6 GeV的质子成像系统, 该系统分别使用理想准直器、拉伸型准直器和利用该方法设计的准直器, 并对比通过客体后的通量分布. 结果表明, 在使用理想准直器和该方法设计的角度准直器时, 二者得到的客体的通量分布符合较好, 而使用拉伸型准直器时, 与使用理想准直器得到的结果相差较大. 因此利用理想准直器方法设计的准直器可以很好地减小通量误差.
    The angle-cut collimator plays an important role in high-energy proton radiography. By using the collimator, the image contrast can be improved, and the material diagnosis and density reconstruction can be realized through secondary imaging. As all these techniques depend on the flux value, it is of great significance to reduce the error of the detected flux value. The ideal collimator is a much thin surface, but thick enough to block protons outside the collimation region. It is designed by stretching the aperture of the collimation plane. The shape is cylindrical, and it will increase the error of the flux value with the angle truncation. The initial bunch is defined and the phase diagram of the bunch within the angle-cut is ideal in the theoretical model. The equation of designing the collimator is given by theoretical analysis. It is given by the transfer matrix, the radius of the object and the angle-cut. The pore structure is oval-shaped by calculating and simulating. The proton imaging system of 1.6 GeV is established by Geant4 program, and the detector is ideal. The round copper plate and the concentric spheres are chosen as objects respectively. The parameters of the designed collimator is given by this method. The ideal collimator, tensile collimator and designed collimator are used in simulation, the radius of object is 5 cm and the angle-cut is 2 mrad and 3.5 mrad. The results show that when using the ideal and the designed angle-cut collimator, the flux distributions are in good agreement, while when using the tensile collimator, the result is quite different from that obtained by using the ideal collimator. Therefore, the collimator designed by this method can effectively reduce the error of the detected flux value.
      通信作者: 许海波, 13641017929@163.com
    • 基金项目: 国家自然科学基金(批准号: 11675021)和国家自然科学青年科学基金(批准号: 11805018)资助的课题
      Corresponding author: Xu Hai-Bo, 13641017929@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11805018)
    [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason A J, Barlow D B, Blind B, Kelley J P, Lysenko W P, Neri F, Walstrom P L, Waynert J, Schulze M 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Meth. Phys. Res., Sect. A 424 84

    [5]

    Rigg P A, Schwartz C L, Hixson R S, Hogan G E, Kwiatkowski K K, Mariam F G, Marr-Lyon M, Merrill F E, Morris C L, Rightly P, Sauders A, Tupa D 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [8]

    Golubev A A, Demidov V S, Demidova E V, Dudin S V, Kantsyrev A V, Kolesnikov S A, Mintsev V B, Smirnov G N, Turtikov V I, Utikin A V, Fortov V E, Sharkov B Y 2010 Tech. Phys. Lett. 36 177Google Scholar

    [9]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [10]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC2016 Proceedings of the 21 st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [11]

    Merrill F E 2015 Rev. Accel. Sci. Technol. 8 165Google Scholar

    [12]

    Sheng L N, Zhao Y T, Yang G J, Wei T 2014 Laser Part. Beams 32 651Google Scholar

    [13]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [14]

    Aufderheide M B, Park H, Hartouni E P 1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [15]

    Zumbro J D, Acuff A, Bull J S, et al. 2005 Radiat. Prot. Dosim. 117 447

    [16]

    Fesseha G, Mariam, John P 2011 2011 High-Energy-Proton Microscopy Workshop Summary Report New Mexico, USA, October 27–28, 2011 p54

    [17]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energ. 114 359Google Scholar

    [18]

    Varentsov D, Bogdanov A, Demidov V S 2013 Phys. Medica 29 208Google Scholar

    [19]

    Yan Y, Sheng L N, Huang Z W, et al. 2015 Laser Part. Beams 33 439Google Scholar

    [20]

    Kantsyrev A V, Skoblyakov A V, Bogdanov A V 2018 J. Phys.: Conf. Ser. 946 012019Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

  • 图 1  质子成像系统示意图

    Fig. 1.  Schematic diagram of proton radiography system.

    图 2  一定截断角以内的质子束团在通过准直空间时的形状变化 (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m

    Fig. 2.  Shape changed of proton bunch within certain angle-cuts as it passes through the collimation space: (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m.

    图 3  质子成像系统参数示意图

    Fig. 3.  Diagram of parameters of proton radiography system.

    图 4  截断角为2 mrad、客体尺寸为5 cm时的目标束团边界线

    Fig. 4.  Boundary lines of the target bunch when the angle-cut is 2 mrad and the object size is 5 cm.

    图 5  端口处的孔径值随截断角的变化 (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$

    Fig. 5.  Aperture size varies with the angle-cut at the ports: (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$.

    图 6  准直器孔径的形状 (a) x-y平面; (b) y-z平面

    Fig. 6.  Shape of aperture of the collimator: (a) x-y plane; (b) y-z plane.

    图 7  客体示意图 (a)铜板; (b)同心球体

    Fig. 7.  Diagram of the object: (a) The round copper plate; (b) the concentric spheres.

    图 8  通过铜板的通量分布 (a)截断角为2 mrad; (b)截断角为3.5 mrad

    Fig. 8.  Flux distribution after passing the round copper plate: (a) Angle-cut of 2 mrad; (b) angle-cut of 3.5 mrad.

    图 9  通过同心球的通量分布 (a)截断角为2 mrad; (b)截断角为3.5 mrad

    Fig. 9.  Flux distribution after passing the concentric spheres: (a) Angle-cut of 2 mrad; (b) angle-cut of 3.5 mrad.

    表 1  1.6 GeV质子成像系统参数

    Table 1.  Parameters of the proton radiography system of 1.6 GeV.

    s/ml/mG/T·m–1t/m
    1.20.88.090.5
    下载: 导出CSV

    表 2  准直器的孔径参数

    Table 2.  Aperture parameters of the collimator.

    截断角/mrad准直器类型前端/cm 后端/cm厚度/m外半径/m材料
    xy xy
    2理想型 0.6110–73Al
    拉伸型0.61 0.611 & 0.43W
    设计型2.042.46 0.6113W
    3.5理想型 1.0710–73Al
    拉伸型1.07 1.071 & 0.43W
    设计型2.343.08 1.0713W
    下载: 导出CSV
    Baidu
  • [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason A J, Barlow D B, Blind B, Kelley J P, Lysenko W P, Neri F, Walstrom P L, Waynert J, Schulze M 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Meth. Phys. Res., Sect. A 424 84

    [5]

    Rigg P A, Schwartz C L, Hixson R S, Hogan G E, Kwiatkowski K K, Mariam F G, Marr-Lyon M, Merrill F E, Morris C L, Rightly P, Sauders A, Tupa D 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [8]

    Golubev A A, Demidov V S, Demidova E V, Dudin S V, Kantsyrev A V, Kolesnikov S A, Mintsev V B, Smirnov G N, Turtikov V I, Utikin A V, Fortov V E, Sharkov B Y 2010 Tech. Phys. Lett. 36 177Google Scholar

    [9]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [10]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC2016 Proceedings of the 21 st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [11]

    Merrill F E 2015 Rev. Accel. Sci. Technol. 8 165Google Scholar

    [12]

    Sheng L N, Zhao Y T, Yang G J, Wei T 2014 Laser Part. Beams 32 651Google Scholar

    [13]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [14]

    Aufderheide M B, Park H, Hartouni E P 1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [15]

    Zumbro J D, Acuff A, Bull J S, et al. 2005 Radiat. Prot. Dosim. 117 447

    [16]

    Fesseha G, Mariam, John P 2011 2011 High-Energy-Proton Microscopy Workshop Summary Report New Mexico, USA, October 27–28, 2011 p54

    [17]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energ. 114 359Google Scholar

    [18]

    Varentsov D, Bogdanov A, Demidov V S 2013 Phys. Medica 29 208Google Scholar

    [19]

    Yan Y, Sheng L N, Huang Z W, et al. 2015 Laser Part. Beams 33 439Google Scholar

    [20]

    Kantsyrev A V, Skoblyakov A V, Bogdanov A V 2018 J. Phys.: Conf. Ser. 946 012019Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真.  , 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究.  , 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟.  , 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [4] 游志明, 王洁, 高勇, 范佳锟, 张静, 胡耀程, 王盛, 许章炼, 张琦. 超级质子-质子对撞机束屏内气体密度演化规律研究.  , 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [5] 陈锋, 郝建红, 许海波. 考虑磁透镜边缘场的质子成像系统优化设计.  , 2021, 70(2): 022901. doi: 10.7498/aps.70.20201141
    [6] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像.  , 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [7] 琚安安, 郭红霞, 张凤祁, 郭维新, 欧阳晓平, 魏佳男, 罗尹虹, 钟向丽, 李波, 秦丽. 铁电存储器中高能质子引发的单粒子功能中断效应实验研究.  , 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [8] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建.  , 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [9] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像.  , 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [10] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究.  , 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [11] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建.  , 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [12] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建.  , 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [13] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究.  , 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [14] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究.  , 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [15] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场.  , 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [16] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述.  , 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [17] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断.  , 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [18] 袁志林, 杨睿, 杨柳, 宋丽丹, 孙莉萍, 马雨虹, 王猛, 陈定康, 郭金平, 唐丽红. 基于单准直透镜的阵列准直器研究.  , 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [19] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算.  , 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [20] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究.  , 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
计量
  • 文章访问数:  7050
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2019-11-28
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map