-
贵金属纳米结构中的光热效应在肿瘤光热治疗、光热成像、纳米药物等领域具有重要的应用价值.各向异性的芯帽纳米结构以其丰富的可调结构参数和对激发光偏振态敏感的特性,可灵活地在近红外波段获得理想的光学吸收性质,从而可以实现温度的高效调节.本文基于有限元方法研究了颗粒物纳米结构参数对其光热效果的作用规律,数值结果表明:通过对结构参数的微量改变(包括金壳厚度、芯壳比、芯径、金属表面覆盖率等)可实现温度的显著调整;在偏振态的旋转范围(3070)内可快速地产生大温变光热的准线性调整.其不弱于纳米芯壳和纳米棒结构的光热性能可为纳米光热生医研究提供一种新的选择.
-
关键词:
- 局域表面等离子体共振 /
- 芯帽结构 /
- 光热性质 /
- 偏振态
Photothermal effects associated with noble metal nanostructures have shown wide potential applications in photo-thermal cancer therapy, photo-thermal imaging, nanomedicine, etc. These applications benefit from the localized surface plasmon resonance (LSPR) effect of the nanoparticles. Due to the LSPR effect, the nanoparticles exhibit unique optical properties such as strong scattering and absorption in the band ranging from visible to near-infrared region. The absorption enables the plasmonic nanoparticle to be a thermal source to increase the temperature of itself and the localized surrounding environment. Among these particels, the anisotropic core-capped nanostructures distinguish themselves by their strong polarization selectivity. The absorptions are different when the incident light is polarized in the directions vertical (90) and parallel (0) to its symmetry axis, respectively. At 90, a large red-shift can be achieved and the absorption cross section is greatly enhanced. Moreover, their absorption peaks can be flexibly manipulated by slightly adjusting one of the geometrical parameters. However, the photothermal responses to these parameters are left blank. In this paper, photothermal effects of SiO2@Au core-capped nanoparticles are studied based on the numerical finite elemental analysis method (COMSOL software). The thermal response to each of the paramenters, including shell thickness, core diameter, core-shell ratio, and metal surface coverage is achieved. The calculation shows that the temperature of these core-capped nanoparticles can be adjusted efficiently in the near infrared band by easily rotating the polarization, i.e. slightly adjusting the geometric parameters. Especially in a range between 30 and 70, the temperature varying with the polarization follows almost a linear relationship. The comparisons with other popular structures including solid sphere, core-shell and nanorod are also made. The results indicate that at a similar size, the core-capped structure can offer a higher temperature than solid spheres and core-shell structures. To obtain the same temperature variation, the core-capped one has a smaller size than a nanorod. The comparisons demonstrate that the core-capped structure can be an alternative to a high-efficient nano heat source in the photothemal applications.-
Keywords:
- localized surface plasmon resonance /
- core-capped structure /
- photothermal properties /
- polarization
[1] Cao J, Sun T, Grattan K T V 2014 Sens. Actuator B:Chem. 195 332
[2] Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8
[3] Ortega-mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morn P, Villegas-Hhernndez D, Chvez F 2014 Sensors 14 18701
[4] Yang C C, Chu C K, Yu C K, Li M J, Chi T T, Kiang Y W, Tu Y C, Chang Y W 2014 Opt. Express 22 11754
[5] Landsman M L, Kwant G, Mook G A, Zijlstra W G 1976 J. Appl. Physiol. 40 575
[6] Wang C, Xu L G, Xu J T, Yang D, Liu B, Gai S L, He F, Yang P P 2017 Dalton Trans. 46 12147
[7] Li J C, Hu Y, Yang J, Wei P, Sun W J, Shen M W, Zhang G X, Shi X Y 2015 Biomaterials 38 10
[8] Truong N P, Whittaker M R, Mak C W, Davis T P 2015 Expert Opin. Drug Deliv. 12 129
[9] Daraee H, Eatemadi A, Abbasi E, Aval S F, Kouhi M, Akbarzadeh A 2016 Artif. Cell. Nanomed. Biotechnol.44 1
[10] Chen M, Tang S H, Guo Z D, Wang X Y, Mo S G, Huang X Q, Liu G, Zheng N F 2015 Adv. Mater. 26 8210
[11] Jaque D, Mart -Nez M L, Del R B, Haro-Gonzalez P, Benayas A, Plaza J L 2014 Nanoscale 6 9494
[12] Lee S M, Kim H J, Ha Y J, Park Y N, Lee S K, Park Y B, Yoo K H 2012 ACS Nano 7 50
[13] Xing R T, Liu K, Jiao T F, Zhang N, Ma K, Zhang R Y, Zou Q L, Ma G H, Yan X H 2016 Adv. Mater. 28 3669
[14] Smith A M, Mancini M C, Nie S 2009 Nat. Nanotechnol. 4 710
[15] Oldenburg S J, Averitt R D, Westcott S L, Halas N J 1998 Chem. Phys. Lett. 288 243
[16] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T 2005 J. Phys. Chem. B 109 13857
[17] Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683
[18] Zhang X Y, Zhang T, Hu A, Song Y J, Duley W W 2012 Appl. Phys. Lett. 101 153118
[19] Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873
[20] Gans R, ber D 1912 Ann. Phys. 342 881
[21] Liu J, Cankurtaran B, Wieczorek L, Ford M J, Cortie M 2006 Adv. Funct. Mater. 16 1457
[22] Hong X, Wang C C 2018 Acta Opt. Sin. 38 524001 (in Chinese) [洪昕, 王晨晨 2018 光学学报 38 524001]
[23] Himmelhaus M, Takei H 2000 Sens. Actuator B:Chem. 63 24
[24] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]
[25] Song J B, Yang X Y, Jacobson O, Huang P, Sun X L, Lin L S, Yan X F, Niu G, Ma Q J, Chen X Baffou G, Quidant R Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550
[26] Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171
[27] Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550
-
[1] Cao J, Sun T, Grattan K T V 2014 Sens. Actuator B:Chem. 195 332
[2] Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8
[3] Ortega-mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morn P, Villegas-Hhernndez D, Chvez F 2014 Sensors 14 18701
[4] Yang C C, Chu C K, Yu C K, Li M J, Chi T T, Kiang Y W, Tu Y C, Chang Y W 2014 Opt. Express 22 11754
[5] Landsman M L, Kwant G, Mook G A, Zijlstra W G 1976 J. Appl. Physiol. 40 575
[6] Wang C, Xu L G, Xu J T, Yang D, Liu B, Gai S L, He F, Yang P P 2017 Dalton Trans. 46 12147
[7] Li J C, Hu Y, Yang J, Wei P, Sun W J, Shen M W, Zhang G X, Shi X Y 2015 Biomaterials 38 10
[8] Truong N P, Whittaker M R, Mak C W, Davis T P 2015 Expert Opin. Drug Deliv. 12 129
[9] Daraee H, Eatemadi A, Abbasi E, Aval S F, Kouhi M, Akbarzadeh A 2016 Artif. Cell. Nanomed. Biotechnol.44 1
[10] Chen M, Tang S H, Guo Z D, Wang X Y, Mo S G, Huang X Q, Liu G, Zheng N F 2015 Adv. Mater. 26 8210
[11] Jaque D, Mart -Nez M L, Del R B, Haro-Gonzalez P, Benayas A, Plaza J L 2014 Nanoscale 6 9494
[12] Lee S M, Kim H J, Ha Y J, Park Y N, Lee S K, Park Y B, Yoo K H 2012 ACS Nano 7 50
[13] Xing R T, Liu K, Jiao T F, Zhang N, Ma K, Zhang R Y, Zou Q L, Ma G H, Yan X H 2016 Adv. Mater. 28 3669
[14] Smith A M, Mancini M C, Nie S 2009 Nat. Nanotechnol. 4 710
[15] Oldenburg S J, Averitt R D, Westcott S L, Halas N J 1998 Chem. Phys. Lett. 288 243
[16] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T 2005 J. Phys. Chem. B 109 13857
[17] Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683
[18] Zhang X Y, Zhang T, Hu A, Song Y J, Duley W W 2012 Appl. Phys. Lett. 101 153118
[19] Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873
[20] Gans R, ber D 1912 Ann. Phys. 342 881
[21] Liu J, Cankurtaran B, Wieczorek L, Ford M J, Cortie M 2006 Adv. Funct. Mater. 16 1457
[22] Hong X, Wang C C 2018 Acta Opt. Sin. 38 524001 (in Chinese) [洪昕, 王晨晨 2018 光学学报 38 524001]
[23] Himmelhaus M, Takei H 2000 Sens. Actuator B:Chem. 63 24
[24] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]
[25] Song J B, Yang X Y, Jacobson O, Huang P, Sun X L, Lin L S, Yan X F, Niu G, Ma Q J, Chen X Baffou G, Quidant R Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550
[26] Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171
[27] Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550
计量
- 文章访问数: 6241
- PDF下载量: 114
- 被引次数: 0