搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬空石墨烯对其表面金纳米膜形貌的影响

田士兵 顾长志 李俊杰

引用本文:
Citation:

悬空石墨烯对其表面金纳米膜形貌的影响

田士兵, 顾长志, 李俊杰

Morphological evolution and liquid-like behavior of gold nanofilm on the suspended graphene

Tian Shi-Bing, Gu Chang-Zhi, Li Jun-Jie
PDF
导出引用
  • 石墨烯与金属间的相互作用是石墨烯器件研究中的关键问题之一,其涉及石墨烯器件的电学接触、锂离子电池石墨烯电极、石墨烯金属光学等方面.本文重点研究了不同层数的悬空石墨烯表面金纳米膜退火前后的形貌演化过程,观测到两个重要的现象:1)排除基底影响后的悬空石墨烯层数可以通过金纳米膜的形貌特征进行确认,但其随层数的变化趋势与有基底支撑的石墨烯正好相反;2)退火处理后的悬空石墨烯上的金纳米膜形貌演化过程具有类似水滴在荷叶上的行为.对悬空石墨烯表面金属纳米膜在退火前后的形貌变化规律及其现象背后的物理机理进行了详细的讨论和理论解释.
    The morphological evolutions of gold nanofilm on the suspended graphene is investigated before and after an annealing process, and two important phenomena are observed. First, the layer number of suspended graphene can be determined by the morphological change of gold nanofilm, and it is noteworthy that as-observed results without the substrate supporting effect are completely contrary to previously reported results of the graphene supported by the substrate. Second, after a rapid and careful annealing process, the gold nanofilm on the suspended graphene shows a liquid-like behavior as if the water is on the lotus leave surface. The mechanisms behind these phenomena are discussed in detail. These results provide very useful information for many applications such as metal intercalation in graphene, electronic contact between metal and graphene, fabrication of patterned suspended graphene device, etc.
      通信作者: 顾长志, czgu@iphy.ac.cn;jjli@iphy.ac.cn ; 李俊杰, czgu@iphy.ac.cn;jjli@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674387,61390503,11574369)和国家重点研发计划(批准号:2016YFA0200800,2016YFA0200400)资助的课题.
      Corresponding author: Gu Chang-Zhi, czgu@iphy.ac.cn;jjli@iphy.ac.cn ; Li Jun-Jie, czgu@iphy.ac.cn;jjli@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674387, 61390503, 11574369) and the National Key RD Program of China (Grant Nos. 2016YFA0200800, 2016YFA0200400).
    [1]

    Xia F, Perebeinos V, Lin Y M, Wu Y, Avouris P 2011 Nat. Nanotechnol. 6 179

    [2]

    Grosse K L, Bae M H, Lian F F, Pop E, King W P 2011 Nat. Nanotechnol. 6 287

    [3]

    Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B, Thong J T L 2011 Nano Lett. 11 113

    [4]

    Goyal V, Balandin A A 2012 Appl. Phys. Lett. 100 073113

    [5]

    Huard B, Stander N, Sulpizio J A, Goldhaber-Gordon D 2008 Phys. Rev. B 78 121402

    [6]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [7]

    Krstic V, Obergfell D, Hansel S, Rikken G L, Blokland J H, Ferreira M S, Roth S 2008 Nano Lett. 8 1700

    [8]

    Gong C, Hinojos D, Wang W, Nijem N, Shan B, Wallace R M, Cho K, Chabal Y J 2012 ACS Nano 6 5381

    [9]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2012 J. Phys. Chem. Lett. 3 953

    [10]

    Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Yang H, Gu C, Sun L 2010 J. Am. Chem. Soc. 132 944

    [11]

    Zhou H Q, Qiu C Y, Yu F, Yang H C, Chen M J, Hu L J, Sun L F 2011 J. Phys. Chem. C 115 11348

    [12]

    Zhou H Q, Yu F, Yang H C, Chen M J, Wang G, Sun L F 2011 Chem. Phys. Lett. 518 76

    [13]

    Zhou H, Yu F, Yang H, Qiu C, Chen M, Hu L, Guo Y, Yang H, Gu C, Sun L 2011 Chem. Commun. 47 9408

    [14]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [15]

    Balandin A A 2011 Nat. Mater. 10 569

    [16]

    Shi Z W, Lu H L, Zhang L C, Yang R, Wang Y, Liu D H, Guo H M, Shi D X, Gao H J, Wang E G, Zhang G Y 2012 Nano Res. 5 82

    [17]

    Newaz A K, Puzyrev Y S, Wang B, Pantelides S T, Bolotin K I 2012 Nat. Commun. 3 734

    [18]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861

    [19]

    Klimov N N, Jung S, Zhu S, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557

    [20]

    Lindahl N, Midtvedt D, Svensson J, Nerushev O A, Lindvall N, Isacsson A, Campbell E E 2012 Nano Lett. 12 3526

    [21]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [23]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [24]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [25]

    Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S, Casiraghi C 2012 Nano Lett. 12 617

    [26]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198

    [27]

    Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102

    [28]

    Mo Y W, Kleiner J, Webb M B, Lagally M G 1991 Phys. Rev. Lett. 66 1998

    [29]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [30]

    Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y, Ajayan P M, Koratkar N A 2012 Nat. Mater. 11 217

    [31]

    Tian S, Li L, Sun W, Xia X, Han D, Li J, Gu C 2012 Sci. Rep. 2 511

  • [1]

    Xia F, Perebeinos V, Lin Y M, Wu Y, Avouris P 2011 Nat. Nanotechnol. 6 179

    [2]

    Grosse K L, Bae M H, Lian F F, Pop E, King W P 2011 Nat. Nanotechnol. 6 287

    [3]

    Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B, Thong J T L 2011 Nano Lett. 11 113

    [4]

    Goyal V, Balandin A A 2012 Appl. Phys. Lett. 100 073113

    [5]

    Huard B, Stander N, Sulpizio J A, Goldhaber-Gordon D 2008 Phys. Rev. B 78 121402

    [6]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [7]

    Krstic V, Obergfell D, Hansel S, Rikken G L, Blokland J H, Ferreira M S, Roth S 2008 Nano Lett. 8 1700

    [8]

    Gong C, Hinojos D, Wang W, Nijem N, Shan B, Wallace R M, Cho K, Chabal Y J 2012 ACS Nano 6 5381

    [9]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2012 J. Phys. Chem. Lett. 3 953

    [10]

    Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Yang H, Gu C, Sun L 2010 J. Am. Chem. Soc. 132 944

    [11]

    Zhou H Q, Qiu C Y, Yu F, Yang H C, Chen M J, Hu L J, Sun L F 2011 J. Phys. Chem. C 115 11348

    [12]

    Zhou H Q, Yu F, Yang H C, Chen M J, Wang G, Sun L F 2011 Chem. Phys. Lett. 518 76

    [13]

    Zhou H, Yu F, Yang H, Qiu C, Chen M, Hu L, Guo Y, Yang H, Gu C, Sun L 2011 Chem. Commun. 47 9408

    [14]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [15]

    Balandin A A 2011 Nat. Mater. 10 569

    [16]

    Shi Z W, Lu H L, Zhang L C, Yang R, Wang Y, Liu D H, Guo H M, Shi D X, Gao H J, Wang E G, Zhang G Y 2012 Nano Res. 5 82

    [17]

    Newaz A K, Puzyrev Y S, Wang B, Pantelides S T, Bolotin K I 2012 Nat. Commun. 3 734

    [18]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861

    [19]

    Klimov N N, Jung S, Zhu S, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557

    [20]

    Lindahl N, Midtvedt D, Svensson J, Nerushev O A, Lindvall N, Isacsson A, Campbell E E 2012 Nano Lett. 12 3526

    [21]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [23]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [24]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [25]

    Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S, Casiraghi C 2012 Nano Lett. 12 617

    [26]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198

    [27]

    Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102

    [28]

    Mo Y W, Kleiner J, Webb M B, Lagally M G 1991 Phys. Rev. Lett. 66 1998

    [29]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [30]

    Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y, Ajayan P M, Koratkar N A 2012 Nat. Mater. 11 217

    [31]

    Tian S, Li L, Sun W, Xia X, Han D, Li J, Gu C 2012 Sci. Rep. 2 511

  • [1] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性.  , 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [2] 刘小红, 姜珊, 常林, 张炜. 非贵金属表面增强拉曼散射基底的研究进展.  , 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [3] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [4] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [5] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究.  , 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [6] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像.  , 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [7] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测.  , 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [8] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [9] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [10] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [11] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响.  , 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [12] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究.  , 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [13] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型.  , 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [14] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术.  , 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [15] 陈东猛. 在不同应力下石墨烯中拉曼谱的G峰劈裂的变化.  , 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [16] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征.  , 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [17] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究.  , 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [18] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算.  , 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [19] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究.  , 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [20] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究.  , 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
计量
  • 文章访问数:  5468
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-05-10
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map