搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响

李贺 陈安民 于丹 李苏宇 金明星

引用本文:
Citation:

温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响

李贺, 陈安民, 于丹, 李苏宇, 金明星

Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution

Li He, Chen An-Min, Yu Dan, Li Su-Yu, Jin Ming-Xing
PDF
导出引用
  • 利用飞秒激光脉冲在NaCl溶液中成丝,研究了溶液温度对飞秒激光成丝过程中产生的超连续谱的影响.发现在激光脉冲能量较低时,溶液温度对超连续谱的影响几乎可以忽略;而在激光脉冲能量较高时,随着NaCl溶液温度的升高,超连续谱呈现出被压缩的趋势.此外,在激光脉冲能量较高的情况下,NaCl中会产生大量的气泡.通过分析,得出了飞秒激光在溶液中成丝产生的气泡是影响超连续谱发射的主要因素.
    Supercontinuum generation is an important nonlinear phenomenon that occurs during the femtosecond laser filamentation in transparent medium, and its potential and promising applications like remote sensing, biomedical imaging and generation of few-cycle femtosecond pulses, etc. have aroused a great deal of interest. With the extensive and thorough theoretical simulation and experimental research of the supercontinuum generation in air, the mechanism of the supercontinuum induced by femtosecond laser filament in gaseous medium has become clear. However, the femtosecond laser filament-induced supercontinuum in liquid is still an open question. In this work, by taking NaCl solution for example, we investigate the influence of solution temperature on the supercontinuum induced by the femtosecond laser filamentation in solution. It is found that when the laser pulse energy is relatively low (e.g. 20 and 50 J), the influence of solution temperature on supercontinuum generation can be neglected. In contrast, when the laser pulse energy is relatively high (e.g. 200 J), with the increase of solution temperature, the supercontinuum generation shows a suppression tendency. The water molecules in NaCl solution are photo-ionized due to the high intensity of femtosecond laser filament, generating a great deal of oxygen (O2), hydrogen (H2) and water vapor (H2O), and thus forming bubbles that float upwards. In the case of lower pulse energy, the multi-photon ionization rate is low, therefore, only a few bubbles are generated, and they are small in size, which hardly affects the supercontinuum generation. In the case of higher pulse energy, a large number of bubbles can be observed in the NaCl solution, and their sizes become increasingly large when the temperature of NaCl solution increases. The generation of bubbles leads to the reflection and refraction of light, which inevitably influences the spectral intensity. Furthermore, the components (e.g. O2, H2 and H2O) in the bubbles also absorb the supercontinuum, which further lowers the spectral intensity. This work reveals that the main factors leading to the supercontinuum suppression in solution can be attributed to the generation of bubbles during femtosecond laser filamentation and the scattering and absorption of light caused by water vapor in bubbles. When we detect the components in solution via the femtosecond laser filament-induced supercontiunum, the influence of tempera-ture can be effectively eliminated by adjusting the incident pulse energy. Moreover, in the case of high pulse energy, the supercontinuum generation can be controlled by adjusting the solution temperature. This study is conducible to the application of supercontinuum as well as its generation.
      通信作者: 李苏宇, sylee@jlu.edu.cn;mxjin@jlu.edu.cn ; 金明星, sylee@jlu.edu.cn;mxjin@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11704145,11474129,11674124)和中国博士后科学基金(批准号:2017M610190)资助的课题.
      Corresponding author: Li Su-Yu, sylee@jlu.edu.cn;mxjin@jlu.edu.cn ; Jin Ming-Xing, sylee@jlu.edu.cn;mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704145, 11474129, 11674124) and the China Postdoctoral Science Foundation (Grant No. 2017M610190).
    [1]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [2]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [3]

    Couairona A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [4]

    Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R, Xu Z Z 2012 Laser Phys. 22 1

    [5]

    Couairon A, Brambilla E, Corti T, Majus D, Ramrez-Gngora O D J, Kolesik M 2011 Eur. Phys. J. Special Topics 199 5

    [6]

    Li S Y, Guo F M, Yang Y J, Jin M X 2015 Chin. Phys. B 24 114207

    [7]

    Liu W W 2014 Chin. J. Phys. 52 465

    [8]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photon. Rev. 9 275

    [9]

    Li H, Li S Y, Li S C, Liu D L, Tian D, Chen A M, Wang Y, Wang X W, Zhang Y F, Jin M X 2016 High Power Laser Sci. Eng. 4 e7

    [10]

    Shi Y, Chen A, Jiang Y, Li S, Jin M 2016 Opt. Commun. 367 174

    [11]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [12]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 011401

    [13]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [14]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838

    [15]

    Liu Z Y, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [16]

    Li H, Shi Z, Wang X W, Sui L Z, Li S Y, Jin M X 2017 Chem. Phys. Lett. 681 86

    [17]

    Qin Y D, Zhu C J, Yang H, Gong Q H 2000 Chin. Phys. Lett. 17 413

    [18]

    Li D, Zhang L, Zafar S, Song H, Hao Z, Xi T, Gao X, Lin J 2017 Chin. Phys. B 26 074213

    [19]

    Luo Q, Liu W, Chin S L 2003 Appl. Phys. B 76 337

    [20]

    Yao J P, Zeng B, Xu H L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802

    [21]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750

    [22]

    Kasparian J, Rodriguez M, Mjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andr Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wste L 2003 Science 301 61

    [23]

    Tu H, Boppart S A 2013 Laser Photon. Rev. 7 628

    [24]

    Berg L, Rolle J, Khler C 2013 Phys. Rev. A 88 023816

    [25]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [26]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582

    [27]

    Liu W, Petit S, Becker A, Akozbek N, Bowdenb C M, Chin S L 2002 Opt. Commun. 202 189

    [28]

    Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L 2003 Appl. Phys. B 77 149

    [29]

    Santhosh C, Dharmadhikari A K, Dharmadhikari J, Alti K, Mathur D 2010 Appl. Phys. B 99 427

    [30]

    Cui Q N, Yao J P, Ni J L, Cheng Y 2012 J. Opt. 14 075205

    [31]

    Lagac S, Chin S L 1996 Appl. Opt. 35 907

    [32]

    Mizushima Y, Saito T 2015 Appl. Phys. Lett. 107 114102

  • [1]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [2]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [3]

    Couairona A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [4]

    Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R, Xu Z Z 2012 Laser Phys. 22 1

    [5]

    Couairon A, Brambilla E, Corti T, Majus D, Ramrez-Gngora O D J, Kolesik M 2011 Eur. Phys. J. Special Topics 199 5

    [6]

    Li S Y, Guo F M, Yang Y J, Jin M X 2015 Chin. Phys. B 24 114207

    [7]

    Liu W W 2014 Chin. J. Phys. 52 465

    [8]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photon. Rev. 9 275

    [9]

    Li H, Li S Y, Li S C, Liu D L, Tian D, Chen A M, Wang Y, Wang X W, Zhang Y F, Jin M X 2016 High Power Laser Sci. Eng. 4 e7

    [10]

    Shi Y, Chen A, Jiang Y, Li S, Jin M 2016 Opt. Commun. 367 174

    [11]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [12]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 011401

    [13]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [14]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838

    [15]

    Liu Z Y, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [16]

    Li H, Shi Z, Wang X W, Sui L Z, Li S Y, Jin M X 2017 Chem. Phys. Lett. 681 86

    [17]

    Qin Y D, Zhu C J, Yang H, Gong Q H 2000 Chin. Phys. Lett. 17 413

    [18]

    Li D, Zhang L, Zafar S, Song H, Hao Z, Xi T, Gao X, Lin J 2017 Chin. Phys. B 26 074213

    [19]

    Luo Q, Liu W, Chin S L 2003 Appl. Phys. B 76 337

    [20]

    Yao J P, Zeng B, Xu H L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802

    [21]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750

    [22]

    Kasparian J, Rodriguez M, Mjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andr Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wste L 2003 Science 301 61

    [23]

    Tu H, Boppart S A 2013 Laser Photon. Rev. 7 628

    [24]

    Berg L, Rolle J, Khler C 2013 Phys. Rev. A 88 023816

    [25]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [26]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582

    [27]

    Liu W, Petit S, Becker A, Akozbek N, Bowdenb C M, Chin S L 2002 Opt. Commun. 202 189

    [28]

    Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L 2003 Appl. Phys. B 77 149

    [29]

    Santhosh C, Dharmadhikari A K, Dharmadhikari J, Alti K, Mathur D 2010 Appl. Phys. B 99 427

    [30]

    Cui Q N, Yao J P, Ni J L, Cheng Y 2012 J. Opt. 14 075205

    [31]

    Lagac S, Chin S L 1996 Appl. Opt. 35 907

    [32]

    Mizushima Y, Saito T 2015 Appl. Phys. Lett. 107 114102

  • [1] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生.  , 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [2] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布.  , 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度.  , 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [4] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性.  , 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [5] 张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣. 飞秒激光成丝过程中由等离子体光栅引起的超连续谱增强与转移.  , 2012, 61(18): 184209. doi: 10.7498/aps.61.184209
    [6] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究.  , 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [7] 乔丽, 冯鸣, 刘组学, 孟婕, 吕可诚. 飞秒脉冲在硅波导中产生超连续谱的研究.  , 2011, 60(10): 100504. doi: 10.7498/aps.60.100504
    [8] 陈东, 余本海, 汤清彬. 中红外组合激光场调控宽带超连续谱的产生.  , 2010, 59(7): 4564-4570. doi: 10.7498/aps.59.4564
    [9] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响.  , 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [10] 李钱光, 兰鹏飞, 洪伟毅, 张庆斌, 陆培祥. 阿秒电离门调控宽带超连续谱的传播特性.  , 2009, 58(8): 5679-5684. doi: 10.7498/aps.58.5679
    [11] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异.  , 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [12] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究.  , 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [13] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究.  , 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [14] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变.  , 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [15] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响.  , 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [16] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.  , 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [17] 刘卫华, 王屹山, 刘红军, 段作梁, 赵 卫, 李永放, 彭钦军, 许祖彦. 初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响.  , 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [18] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生.  , 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [19] 段作梁, 陈建平, 方宗豹, 王兴涛, 李儒新, 林礼煌, 徐至展. 1kHz飞秒激光脉冲在空气中传输成丝的演化过程.  , 2004, 53(2): 473-477. doi: 10.7498/aps.53.473
    [20] 李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张 军, 刘晓东. 多孔微结构光纤中飞秒激光脉冲超连续谱的产生.  , 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
计量
  • 文章访问数:  5888
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-05-23
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map