-
使用复互相干度的定义对时域光波分裂前后以及不同输入噪声、不同初始啁啾和波形下抽运脉冲在高非线性光纤中产生的超连续谱的相干度进行了数值计算,得到了光波分裂前后和不同输入噪声下生成的超连续谱的演化和相干性变化. 结果表明:皮秒脉冲在高非线性光纤正常色散区产生超连续谱的相干性主要受到系统中噪声占比的影响,其中由光波分裂生成的频谱旁瓣的相干度低于由自相位调制生成的中心频谱的相干度;抽运脉冲啁啾和波形对在高非线性光纤正常色散区产生超连续谱的相干性的影响不明显. 若想获得高相干的超连续谱,需要采用低噪声的脉冲进行抽运;若获得大谱宽高相干度的超连续谱,则需要合理选择皮秒脉冲的功率.The coherence properties of the supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber are numerically calculated and analyzed at different input noise powers by introducing the definition of the complex degree of mutual coherence. The results show that the coherence of the generated supercontinuum is affected by the noise ratio of the picosecond pulse. The coherence of the spectrum sidelobes generated by optical wave breaking is lower than that of the center part of the spectrum. The chirp of pulse and shape of pulse do not have an obvious effect on the coherence of the broaden spectrum. Low noise power input is required to obtain high coherent supercontinuum, and the pump power and waveshape should be optimized to obtain the wide bandwidth and high coherent supercontinuum.
-
Keywords:
- supercontinuum /
- coherence property /
- highly nonlinear fiber /
- complex degree of mutual coherence
[1] Lin C,Stolen R 1976 Appl. Phys. Lett. 28 216
[2] Anderson D, Desaix M, Lisak M, Quiroga-Teixeiro M L 1992 JOSA B 9 1358
[3] Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31
[4] Taccheo S, Ennser K 2002 IEEE Photon. Technol. Lett. 14 1100
[5] Dudley J M, Coen S 2002 Opt. Lett. 27 1180
[6] Nakazawa M, Tamura K, Kubota H, Yoshida E 1998 Opt. Fiber Technol. 4 215
[7] Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2013 Opt. Express 11 2697
[8] Jin A J, Wang Z F, Hou J, Guo L, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 郭良, 姜宗福 2012 61 124211]
[9] Li Y, Hou J, Wang Y B, Jin A J, Jiang Z F 2012 Acta Phys. Sin. 61 094212 (in Chinese) [李荧, 侯静, 王彦斌, 靳爱军, 姜宗福 2012 61 094212]
[10] Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 62 184210]
[11] Song R, Hou J, Wang Z F, Xiao R, Lu Q S 2013 Chin. Phys. B 22 084206
[12] Li P, Shi L, Mao Q H 2013 Chin. Phys. B 22 074204
[13] Smith R G 1972 Appl. Opt. 11 2489
[14] Kobtsev Serguei M, Smirnov Serguei V 2005 Opt. Express 13 6912
-
[1] Lin C,Stolen R 1976 Appl. Phys. Lett. 28 216
[2] Anderson D, Desaix M, Lisak M, Quiroga-Teixeiro M L 1992 JOSA B 9 1358
[3] Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31
[4] Taccheo S, Ennser K 2002 IEEE Photon. Technol. Lett. 14 1100
[5] Dudley J M, Coen S 2002 Opt. Lett. 27 1180
[6] Nakazawa M, Tamura K, Kubota H, Yoshida E 1998 Opt. Fiber Technol. 4 215
[7] Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2013 Opt. Express 11 2697
[8] Jin A J, Wang Z F, Hou J, Guo L, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 郭良, 姜宗福 2012 61 124211]
[9] Li Y, Hou J, Wang Y B, Jin A J, Jiang Z F 2012 Acta Phys. Sin. 61 094212 (in Chinese) [李荧, 侯静, 王彦斌, 靳爱军, 姜宗福 2012 61 094212]
[10] Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 62 184210]
[11] Song R, Hou J, Wang Z F, Xiao R, Lu Q S 2013 Chin. Phys. B 22 084206
[12] Li P, Shi L, Mao Q H 2013 Chin. Phys. B 22 074204
[13] Smith R G 1972 Appl. Opt. 11 2489
[14] Kobtsev Serguei M, Smirnov Serguei V 2005 Opt. Express 13 6912
计量
- 文章访问数: 6748
- PDF下载量: 458
- 被引次数: 0