-
建立了射频平板腔动态建场等效电路以及腔体双边二次电子倍增的混合物理模型,利用自主编制的1D3V-PIC二次电子倍增程序和射频平板腔动态建场全电路程序,研究分析了不同腔体Q值情况下二次电子倍增对射频平板腔动态建场过程的影响.数值模拟表明:射频平板腔建场过程中不存在二次电子倍增的情况下,腔体Q值越高,建场时间越长,注入能量等于腔体储能和腔体耗能,建场前期腔体储能速度快于耗能速度,建场后期腔体耗能速度快于储能速度,建场成功后平均腔体消耗功率与平均注入功率相等.射频平板腔建场过程中存在二次电子倍增情况下,腔体Q值越高,进入二次电子倍增的时刻越晚,二次电子倍增作用时间越长;二次电子发射面积越大,二次电子电流峰值越高.二次电子倍增的持续加载,最终会导致射频平板腔建场过程的失败;腔体Q值越高或二次电子发射面积越大,射频平板腔建场成功的概率越低.相关模拟结果可为工程设计提供一定的参考.In this paper, the hybrid physical model is established based on the equivalent circuit for describing dynamic radio-frequency (RF) field buildup and the particle-in-cell (PIC) method for describing two-sided multipactor discharge in plate cavity. By using our built 1D3V-PIC code for multipactor discharge and fully equivalent circuit code for RF field buildup, the influence of multipactor discharge on the dynamic process of RF field buildup is numerically investigated and analyzed in detail under the condition of cavity with different Q-values. The numerical results could be concluded as follows. Under the condition of no multipactor discharge in dynamic process of RF field buildup, the higher the Q-value, the longer the buildup-time is. The input energy is equal to the sum of stored energy and consumed energy in cavity, the speed of energy storing is higher than the speed of energy consuming at the beginning stage of RF field buildup and then the speed of energy storing becomes lower than the speed of energy consuming. When the process of RF field buildup is finished, the average power of input is equal to the average power of consumed power in cavity. Under the condition of multipactor discharge loading in dynamic process of RF field buildup, the higher the Q-value, the later the start-time is and the longer the interaction time-interval of multipactor discharge is. The bigger the area of secondary electron emission, the higher the peak-value of secondary electron current is. The failure of RF field-buildup is caused by the continuous loading of multipactor discharge. The higher the Q-value or the bigger the area of secondary electron emission, the lower the probability of RF field buildup success is. The simulated results could partly provide a reference for engineering design.
-
Keywords:
- multipactor discharge /
- radio-frequency field buildup /
- particle-in-cell simulation /
- equivalent circuit
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Kishek R A, Lau Y Y 1995 Phys. Rev. Lett. 75 1218
[4] Kishek R A 2012 Phys. Rev. Lett. 108 035003
[5] Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 18 053508
[6] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[7] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[8] Zhang X, Wang Y, Fan J J 2015 Phys. Plasmas 22 022110
[9] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[10] Riyopoulos S 1997 Phys. Plasmas 4 1448
[11] Gopinath V P, Verboncoeur J P, Birdsall C K 1998 Phys. Plasmas 5 1535
[12] Devanz G 2001 Phys. Rev. Special Topics-Accelerators and Beams 4 012001
[13] Sakamoto N, Fujimaki M, Goto A, Kamigaito O, Kase M, Koyama R, Suda K, Yamada K, Yokouchi S 2010 Proc. 19th International Conference on Cyclotrons and Their Applications, Lanzhou, China, September 6-10, 2010 pp338-340
[14] Gonin I, Khabilbouline T, Lanfranco G, Mukherjee A, Ozelis J, Ristori L, Sergatskov D 2008 Proc. 42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beams Nashville, United States, August 25-29, 2008 pp431-433
[15] Xu B, Li Z Q, Sha P, Wang G W, Pan W M, He Y 2012 High Power Laser and Particle Beams 24 2723 (in Chinese)[徐波, 李中泉, 沙鹏, 王光伟, 潘卫民, 何源 2012 强激光与粒子束 24 2723]
[16] Wang C, Andreas Adelmann, Zhang T J, Jiang X D 2012 High Power Laser and Particle Beams 24 1244 (in Chinese)[王川, Andreas Adelmann, 张天爵, 姜兴东 2012 强激光与粒子束 24 1244]
[17] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[18] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901 (in Chinese)[董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2017 66 207901]
[19] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901 (in Chinese)[董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2018 67 037901]
[20] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[21] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
-
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Kishek R A, Lau Y Y 1995 Phys. Rev. Lett. 75 1218
[4] Kishek R A 2012 Phys. Rev. Lett. 108 035003
[5] Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 18 053508
[6] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[7] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[8] Zhang X, Wang Y, Fan J J 2015 Phys. Plasmas 22 022110
[9] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[10] Riyopoulos S 1997 Phys. Plasmas 4 1448
[11] Gopinath V P, Verboncoeur J P, Birdsall C K 1998 Phys. Plasmas 5 1535
[12] Devanz G 2001 Phys. Rev. Special Topics-Accelerators and Beams 4 012001
[13] Sakamoto N, Fujimaki M, Goto A, Kamigaito O, Kase M, Koyama R, Suda K, Yamada K, Yokouchi S 2010 Proc. 19th International Conference on Cyclotrons and Their Applications, Lanzhou, China, September 6-10, 2010 pp338-340
[14] Gonin I, Khabilbouline T, Lanfranco G, Mukherjee A, Ozelis J, Ristori L, Sergatskov D 2008 Proc. 42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beams Nashville, United States, August 25-29, 2008 pp431-433
[15] Xu B, Li Z Q, Sha P, Wang G W, Pan W M, He Y 2012 High Power Laser and Particle Beams 24 2723 (in Chinese)[徐波, 李中泉, 沙鹏, 王光伟, 潘卫民, 何源 2012 强激光与粒子束 24 2723]
[16] Wang C, Andreas Adelmann, Zhang T J, Jiang X D 2012 High Power Laser and Particle Beams 24 1244 (in Chinese)[王川, Andreas Adelmann, 张天爵, 姜兴东 2012 强激光与粒子束 24 1244]
[17] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[18] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901 (in Chinese)[董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2017 66 207901]
[19] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901 (in Chinese)[董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2018 67 037901]
[20] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[21] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
计量
- 文章访问数: 5597
- PDF下载量: 72
- 被引次数: 0