-
传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)Gerchberg-Saxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.
-
关键词:
- 光镊 /
- 光阱刚度 /
- 轴平面成像 /
- Gerchberg-Saxton算法
The optical tweezers with the special advantages of non-mechanical contact and the accurate measurement of positions of particles, are a powerful manipulating tool in numerous applications such as in colloidal physics and life science. However, the standard optical tweezers system uses a single objective lens for both trapping and imaging. As a result, the trapping and imaging regions are confined to the volume near the focal plane of the objective lens, making it difficult to track the trapped particles arranged in the axial direction. Therefore, multiple trapping along axial direction remains a challenge. The three-dimensional imaging technology can realize the monitoring of the axial plane, but neither the laser scanning microscopy nor the wide-field imaging technology can meet the requirement of the real-time imaging. To address this issue, we propose a modified axial-plane Gerchberg-Saxton (GS) iterative algorithm based on the Fourier transform in the axial plane. Compared with the direct algorithm such as the Fresnel lens method, the modified axial-plane GS iterative algorithm has a higher modulation efficiency, and the generated axial distribution has a sharper intensity. In theory, the traps generated each have an ideal Gaussian intensity distribution independently, which is proved by the simulation of reconstructed field. With such an iterative algorithm, we can directly create multiple point-trap array arranged along the axial direction. We also develop an axial-imaging scheme. In this scheme, the particles are trapped and a right-angled silver-coated 45 reflector is used to realize axial-plane imaging. The scheme is verified by imaging silica particles in an axial plane and a lateral plane simultaneously. Furthermore, we combine the axial-plane imaging technique with holographic optical tweezers, and demonstrate the simultaneous optical trapping in 22 trap array and the monitoring of multiple silica particles in the axial plane. The trap stiffness of traps array in axial plane is calibrated by measuring the Brownian motion of the trapped particles in the axial trap array with digital video microscopy. The proposed technique provides a new perspective for optical micromanipulation, and enriches the functionality of optical micromanipulation technology, and thus it will have many applications in biological and physical research.-
Keywords:
- optical tweezers /
- trap stiffness /
- axial plane imaging /
- Gerchberg-Saxton algorithm
[1] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
[2] Svoboda K, Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247
[3] Fazal F M, Block S M 2011 Nat. Photon. 5 318
[4] Neuman K C, Nagy A 2008 Nat. Methods 5 491
[5] Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831
[6] Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673
[7] Grier D G 1997 Curr. Opin. Colloid In. 2 264
[8] Tatarkova S A, Carruthers A E, Dholakia K 2002 Phys. Rev. Lett. 89 283901
[9] Bowman R W, Padgett M J 2013 Rep. Prog. Phys. 76 026401
[10] Mike W, Christina A, Michael E, Cornelia D 2012 Laser Photon. Rev. 7 839
[11] Garcs-Chvez V, McGloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145
[12] Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A 2013 Sci. Rep. 3 1116
[13] Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W 2014 Science 346 1257998
[14] Edward J B, Martin J B, Rimas J, Wilson T 2009 Opt. Lett. 34 1504
[15] Edward J B, Martin J B, Rimas J, Wilson T 2008 Opt. Commun. 281 880
[16] Dunsby C 2008 Opt. Express 16 20306
[17] Edward J B, Christopher W S, Michael M K, Delphine D, Martin J B, Rimas J, Ole P, Tony W 2012 PNAS 109 2919
[18] Curran A, Simon T, Dirk G A L A, Martin J B, Wilson T, Roel P A D 2014 Optica 1 223
[19] Dholakia K, Cizmar T 2011 Nat. Photon. 5 335
[20] Padgett M, Di L D 2011 Lab on Chip 11 1196
[21] Reicherter M, Haist T, Wagemann E U 1999 Opt. Lett. 24 608
[22] Davis J A, Cottrell D M 1994 Opt. Lett. 19 496
[23] Gerchberg R 1972 Optik 35 237
[24] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169
[25] Ma B, Yao B, Li Z 2013 Appl. Phys. B 110 531
[26] Richards B, Wolf E 1959 Proc. R. Soc. Lond. A 253 358
[27] Florin L, Pralle A, Stelzer K 1998 Appl. Phys. A 66 S75
-
[1] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
[2] Svoboda K, Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247
[3] Fazal F M, Block S M 2011 Nat. Photon. 5 318
[4] Neuman K C, Nagy A 2008 Nat. Methods 5 491
[5] Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831
[6] Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673
[7] Grier D G 1997 Curr. Opin. Colloid In. 2 264
[8] Tatarkova S A, Carruthers A E, Dholakia K 2002 Phys. Rev. Lett. 89 283901
[9] Bowman R W, Padgett M J 2013 Rep. Prog. Phys. 76 026401
[10] Mike W, Christina A, Michael E, Cornelia D 2012 Laser Photon. Rev. 7 839
[11] Garcs-Chvez V, McGloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145
[12] Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A 2013 Sci. Rep. 3 1116
[13] Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W 2014 Science 346 1257998
[14] Edward J B, Martin J B, Rimas J, Wilson T 2009 Opt. Lett. 34 1504
[15] Edward J B, Martin J B, Rimas J, Wilson T 2008 Opt. Commun. 281 880
[16] Dunsby C 2008 Opt. Express 16 20306
[17] Edward J B, Christopher W S, Michael M K, Delphine D, Martin J B, Rimas J, Ole P, Tony W 2012 PNAS 109 2919
[18] Curran A, Simon T, Dirk G A L A, Martin J B, Wilson T, Roel P A D 2014 Optica 1 223
[19] Dholakia K, Cizmar T 2011 Nat. Photon. 5 335
[20] Padgett M, Di L D 2011 Lab on Chip 11 1196
[21] Reicherter M, Haist T, Wagemann E U 1999 Opt. Lett. 24 608
[22] Davis J A, Cottrell D M 1994 Opt. Lett. 19 496
[23] Gerchberg R 1972 Optik 35 237
[24] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169
[25] Ma B, Yao B, Li Z 2013 Appl. Phys. B 110 531
[26] Richards B, Wolf E 1959 Proc. R. Soc. Lond. A 253 358
[27] Florin L, Pralle A, Stelzer K 1998 Appl. Phys. A 66 S75
计量
- 文章访问数: 6597
- PDF下载量: 174
- 被引次数: 0