搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计

田永顺 胡志良 童剑飞 陈俊阳 彭向阳 梁天骄

引用本文:
Citation:

基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计

田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄

Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy

Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao
PDF
导出引用
  • 在硼中子俘获治疗(BNCT)装置中,束流整形体(BSA)的作用是将中子源产生的快中子束流慢化至超热中子能区(0.5 eV E γ射线的成分,同时保证中子的方向性,其设计与优化是BNCT装置设计工作的核心内容之一.本文采用3.5 MeV,10 mA的质子束轰击锂靶,由核反应7Li(p,n)7Be产生的中子为源项,针对BSA的慢化体材料和结构、γ屏蔽层和热中子吸收层的厚度等参数进行蒙特卡罗模拟设计与优化.研究发现,采用Fluental和LiF两种慢化材料间隔2 cm层状堆叠的三明治BSA构型,在保证快中子剂量成分(Df/φepi),γ剂量成分(Dγ/φepi)和热中子比例φth/φepi满足IAEA-TECDOC-1223报告推荐要求的同时,在BSA出口处超热中子注量率优于单独使用Fluental和单独使用LiF的BSA设计.BSA出口处修正的Synder人头几何模型中的剂量分布计算结果显示:上述三明治构型的深度剂量分布与单独使用Fluental材料构型的结果基本相当,优于单独使用LiF构型,表明Fluental和LiF层状堆叠的三明治BSA构型是一种可行的BSA结构.
    Boron neutron capture therapy (BNCT) is expected to be an effective method of improving the treatment results on malignant brain glioma and malignant melanoma, for which no successful treatment has been developed so far. The beam shaping assembly (BSA) of accelerator-based boron neutron capture therapy (A-BNCT) consists of a moderator, a reflector, gamma and thermal neutron shielding and a collimator. The BSA moderates the fast neutron produced in target to epithermal energy range. Design of BSA is one of the key jobs in BNCT project. An optimized study was conducted to design a beam shaping assembly for BNCT facility based on 3.5 MeV 10 mA radio-frequency quadrupole proton accelerator at Dongguan Neutron Science Center. In this simulation work, the neutron produced from the 7Li (p, n) 7Be reaction by 3.5 MeV proton is adopted as a neutron source term. In order to search for an optimized beam shaping assembly for accelerator-based BNCT, Monte Carlo simulation is carried out based on the parameters of moderator material and structure, the Gamma shielding, and the thermal neutron filter in the beam shaping assembly. The beam shaping assembly in this work consists of various moderator materials, teflon as reflector, Bi as gamma shielding, 6Li as thermal neutron filter, and lithium polyethylene as collimator. After comparing the simulation results of Fluental and LiF moderator materials, the beam shaping assembly configuration based on sandwich Fluental-LiF configuration is proposed. The sandwich Fluental-LiF configuration is made up of Fluental and LiF layer by layer, like a sandwich structure, and each layer is 2 cm thick. According to the beam quality requirement of the IAEA-tecdoc-1223 report, the optimized epithermal neutron flux in air at the exit of BSA of the sandwich Fluental-LiF configuration is 9.14×108 n/(cm2·s), which is greater than those of the Fluental configuration (7.81×108 n/(cm2·s)) and LiF configuration (8.79×108 n/(cm2·s)), when the ratio of fast neutron component to gamma ray component to thermal neutron is less than the limiting value of IAEA recommendation. Subsequently, the depth distribution of the equivalent doses in the Snyder head phantom is calculated to evaluate the treatment characteristic. The simulation results show that the therapy rate of the beam shaping assembly based on the sandwich Fluental-LiF configuration is basically equal to that of the Fluental configuration and better than that of the LiF configuration, and the therapy time is less than that of the Fluental configuration. This means that the beam shaping assembly based on the sandwich Fluental-LiF configuration is one of the suitable options for our accelerator-based BNCT.
      通信作者: 梁天骄, liangtj@ihep.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401504)和广东省产学研合作项目(批准号:2015B090901048)资助的课题.
      Corresponding author: Liang Tian-Jiao, liangtj@ihep.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401504) and the Project of Integration of Industry, Education, and Research of Guangdong Province, China (Grant No. 2015B090901048).
    [1]

    Locher G L 1936 Am. J. Roentgenol. 36 1

    [2]

    Soloway A H, Wright R L, Messer J R 1961 J. Pharmacol. Exp. Ther. 134 117

    [3]

    Sweet W H, Soloway A H, Wright R L 1962 J. Pharmacol. Exp. Ther. 137 263

    [4]

    Soloway A H, Hatanaka H, Davis M A 1967 J. Med. Chem. 10 714

    [5]

    Choi J R, Clement S D, Harling O K, Zamenhof R G 1990 Basic Life Sci. 54 201

    [6]

    Capoulat M E, Minsky D M, Kreiner A J 2014 Phys. Medica 30 133

    [7]

    Phoenix B, Green S, Scott M C, Bennett J R J, Edgecock T R 2015 Appl. Radiat. Isot. 106 49

    [8]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [9]

    Cheng D W, Lu J B, Yang D, Liu Y M, Wang H D, Ma K Y 2012 Chin. Phys. C 36 905

    [10]

    Minsky D M, Kreiner A J 2014 Appl. Radiat. Isot. 88 233

    [11]

    Herrera M S, Gonzalez S J, Burlon A A, Minsky D M, Kreiner A J 2011 Appl. Radiat. Isot. 69 1870

    [12]

    Xiao G, Wang Z Q, Zhang B A, Zhu J S 2006 Chinese J. Medical Physics 23 5 (in Chinese) [肖刚, 王仲奇, 张本爱, 朱建士 2006 中国医学物理学杂志 23 5]

    [13]

    Yoshida F, Yamamoto T, Nakai K, Zaboronok A, Matsumura A 2015 Appl. Radiat. Isot. 106 247

    [14]

    Guan X L, Luo Z H, Fu S N 2003 Chinese J. Nuclear Science and Engineering 23 73 (in Chinese) [关遐龄, 罗紫华, 傅世年 2003 核科学与工程 23 73]

    [15]

    Bleuel D L 2003 Ph. D. Dissertation (Berkeley: University of California at Berkeley)

    [16]

    IAEA 2001 Current Status of Neutron Capture Therapy (Vienna: International Atomic Energy Agency) pp7-8

    [17]

    Snyder W S, Fisher Jr H L, Ford M L, Warner G G 1969 J. Nucl. Medicine 3 7

    [18]

    Pelowitz D G 2005 MCNPX User's Manual Version 250 (Los Alamos: Los Alamos National Laboratory) p1

    [19]

    White D R, Griffith R V, Wilson I J 1992 J. ICRU 1 1

    [20]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [21]

    Lee C, Zhou X R, Harmon F, Harker Y 2000 Med. Phys. 27 192

    [22]

    Coderre J A, Makar M S, Micca P L, Nawrocky M M, Liu H B, Joel D D, Slatkin D N, Amols H I 1993 Int. J. Radiat. Oncol. Biol. Phys. 27 1121

  • [1]

    Locher G L 1936 Am. J. Roentgenol. 36 1

    [2]

    Soloway A H, Wright R L, Messer J R 1961 J. Pharmacol. Exp. Ther. 134 117

    [3]

    Sweet W H, Soloway A H, Wright R L 1962 J. Pharmacol. Exp. Ther. 137 263

    [4]

    Soloway A H, Hatanaka H, Davis M A 1967 J. Med. Chem. 10 714

    [5]

    Choi J R, Clement S D, Harling O K, Zamenhof R G 1990 Basic Life Sci. 54 201

    [6]

    Capoulat M E, Minsky D M, Kreiner A J 2014 Phys. Medica 30 133

    [7]

    Phoenix B, Green S, Scott M C, Bennett J R J, Edgecock T R 2015 Appl. Radiat. Isot. 106 49

    [8]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [9]

    Cheng D W, Lu J B, Yang D, Liu Y M, Wang H D, Ma K Y 2012 Chin. Phys. C 36 905

    [10]

    Minsky D M, Kreiner A J 2014 Appl. Radiat. Isot. 88 233

    [11]

    Herrera M S, Gonzalez S J, Burlon A A, Minsky D M, Kreiner A J 2011 Appl. Radiat. Isot. 69 1870

    [12]

    Xiao G, Wang Z Q, Zhang B A, Zhu J S 2006 Chinese J. Medical Physics 23 5 (in Chinese) [肖刚, 王仲奇, 张本爱, 朱建士 2006 中国医学物理学杂志 23 5]

    [13]

    Yoshida F, Yamamoto T, Nakai K, Zaboronok A, Matsumura A 2015 Appl. Radiat. Isot. 106 247

    [14]

    Guan X L, Luo Z H, Fu S N 2003 Chinese J. Nuclear Science and Engineering 23 73 (in Chinese) [关遐龄, 罗紫华, 傅世年 2003 核科学与工程 23 73]

    [15]

    Bleuel D L 2003 Ph. D. Dissertation (Berkeley: University of California at Berkeley)

    [16]

    IAEA 2001 Current Status of Neutron Capture Therapy (Vienna: International Atomic Energy Agency) pp7-8

    [17]

    Snyder W S, Fisher Jr H L, Ford M L, Warner G G 1969 J. Nucl. Medicine 3 7

    [18]

    Pelowitz D G 2005 MCNPX User's Manual Version 250 (Los Alamos: Los Alamos National Laboratory) p1

    [19]

    White D R, Griffith R V, Wilson I J 1992 J. ICRU 1 1

    [20]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [21]

    Lee C, Zhou X R, Harmon F, Harker Y 2000 Med. Phys. 27 192

    [22]

    Coderre J A, Makar M S, Micca P L, Nawrocky M M, Liu H B, Joel D D, Slatkin D N, Amols H I 1993 Int. J. Radiat. Oncol. Biol. Phys. 27 1121

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟.  , 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应.  , 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [4] 高嵩, 曹文田, 黄新瑞, 包尚联. 硼中子俘获治疗中的含硼-10药物分布及浓度在体测量方法研究进展.  , 2021, 70(14): 148701. doi: 10.7498/aps.70.20201794
    [5] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究.  , 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术.  , 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [7] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化.  , 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [8] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法.  , 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析.  , 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [10] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究.  , 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [13] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究.  , 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用.  , 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  8820
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-04-02
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map