-
利用金(Au)辅助催化的方法,通过金属有机化学气相沉积技术制备了GaAs纳米线及GaAs/InGaAs纳米线异质结构.通过对扫描电子显微镜(SEM)测试结果分析,发现温度会改变纳米线的生长机理,进而影响形貌特征.在GaAs纳米线的基础上制备了高质量的纳米线轴、径向异质结构,并对生长机理进行分析.SEM测试显示,GaAs/InGaAs异质结构呈现明显的柱状形貌与衬底垂直,InGaAs与GaAs段之间的界面清晰可见.通过X射线能谱对异质结样品进行了线分析,结果表明在GaAs/InGaAs轴向纳米线异质结构样品中,未发现明显的径向生长.从生长机理出发分析了在GaAs/InGaAs径向纳米线结构制备过程中伴随有少许轴向生长的现象.
-
关键词:
- 金辅助催化 /
- 金属有机化学气相沉积 /
- GaAs纳米线 /
- GaAs/InGaAs纳米线异质结构
The nanowires (NWs) of heterostructure with GaAs based materials have received great attention in the past decades, due to their potential applications in electronics and optoelectronics. Therefore it becomes more and more important to investigate the technology of fabricating NWs with GaAs based materials. In our study, Au-catalyzed GaAs nanowires and GaAs/InGaAs heterostructures are grown by metal-organic chemical vapor deposition following the vapor-liquid-solid mechanism. The growth process, which is vital for morphology research, is found to be strongly affected by growth temperature via scanning electron microscope testing. The GaAs NWs are grown at varying temperatures to investigate the influence of temperature on NW morphology. It is observed that the axial growth decreases with growth temperature increasing while radial growth exhibits the opposite trend, which causes the length of NWs to decrease with temperature increasing at the same time. As radial growth rate is inhibited and radial growth rate is enhanced at relatively high temperature, the geometry of GaAs nanowires turns from columnar to taper and eventually pyramid with temperature rising. The GaAs/InGaAs nanowire heterostructures with distinct heterostructure interfaces, which are columnar and vertical to substrates, are obtained and analyzed. Energy dispersive X-ray spectroscopy (EDX) is used for element monitoring while radial growth is hardly observed during axial heterostructure fabrication, indicating well controlled fabrication technology of NWs growth. The InGaAs segments of axial heterostructures are grown after GaAs segments and occur at the bottom of NWs instead on the top, the analysis of which shows that In atoms would take part in the growth of NWs via migrating at the surface of substrate preferentially, rather than being absorbed in Au-Ga alloy catalytic droplets. Radial heterostructures of GaAs/InGaAs nanowires are grown with GaAs as cores and InGaAs as shells, respectively. Because the axial growth rate would be restricted with temperature increasing, the growth temperature of radial heterostructures is higher than that of axial heterostructures. A small amount of axial growth occurs during the growth of radial heterostructures as indicated by the EDX monitoring result, which is analyzed to be caused by the diffusion of In atoms at radial growth temperature, resulting in a segment of InGaAs nanowire at the interface of nanowires and Au-Ga alloy catalytic droplets.-
Keywords:
- Au-catalyzed /
- metal-organic chemical vapor deposition /
- GaAs nanowire /
- GaAs/InGaAs nanowire heterostructure
[1] Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 63 136103]
[2] Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871
[3] Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507
[4] Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696
[5] Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29
[6] Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515
[7] Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047
[8] Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]
[9] Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115
[10] Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]
[11] Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224
[12] Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1
[13] Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18
[14] Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28
[15] Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237
[16] Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275
[17] Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447
[18] Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606
[19] L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101
[20] Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604
[21] Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51
-
[1] Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 63 136103]
[2] Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871
[3] Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507
[4] Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696
[5] Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29
[6] Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515
[7] Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047
[8] Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]
[9] Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115
[10] Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]
[11] Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224
[12] Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1
[13] Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18
[14] Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28
[15] Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237
[16] Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275
[17] Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447
[18] Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606
[19] L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101
[20] Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604
[21] Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51
计量
- 文章访问数: 6583
- PDF下载量: 103
- 被引次数: 0