搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制

王兰若 钟源 李劲劲 屈继峰 钟青 曹文会 王雪深 周志强 付凯 石勇

引用本文:
Citation:

用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制

王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇

Development of quantum voltage noise source chip for precision measurement of Boltzmann constant

Wang Lan-Ruo, Zhong Yuan, Li Jin-Jin, Qu Ji-Feng, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Zhou Zhi-Qiang, Fu Kai, Shi Yong
PDF
导出引用
  • 量子噪声温度计系统可通过比较导体中电子运动的热噪声和量子电压参考噪声精密测量玻尔兹曼常数,其中量子电压噪声源所合成的量子电压参考噪声由一组超导约瑟夫森结阵产生.本文详细介绍了基于Nb/NbxSi1-x/Nb约瑟夫森结的量子电压噪声源芯片的设计、制备及测试;采用脉冲驱动模式,合成了具有量子精度的100 kHz交流量子电压信号.结果表明:本文所研制的噪声温度计核心芯片已具备了合成交流电压的功能,可为后续玻尔兹曼常数精密定值、重新定义及复现热力学温度研究提供核心器件.
    The Johnson noise thermometer is used to precisely measure Boltzmann constant by comparing the thermal noise caused by charge movement and the quantized voltage reference noise synthesized by the quantum voltage noise source (QVNS). The QVNS signal is synthesized based on quantized voltage pulses produced by two channels of superconducting Josephson junction arrays, which are designed for cross-correlation electronics. The Nb/NbxSi1-x/Nb Josephson junction is used as a core device of QVNS chip in this work for its non-hysteretic current-voltage (I-V) characteristics and conveniently adjustable barrier parameters.In this paper, we present the design consideration, fabrication process, and measurement results of the QVNS chip. The QVNS chip contains two Josephson junction arrays, each consists of four 6 μm×12 μm junctions and is embedded in a 50 Ω coplanar waveguide transmission line. The random noise in signals from the two driven channels is eliminated by cross-correlation, and then an accurate quantum noise is obtained. Test chips with different areas of Josephson junctions are also designed on the same mask, aiming at estimating the variation range of Ic. The typical fabrication process for voltage standard chips in our laboratory is used for preparing the QVNS chip.The sample is measured at 4.2 K. The DC I-V curve shows that the critical current Ic is 6.1 mA. The I-V characteristics of the junctions under 5 GHz microwave radiation are measured. For a series array of four junctions, a 41.44 μV one-stage Shapiro step is observed. Calculation shows that the error between the measurement and theoretical value of 41.36 μV is about 1.9‰, which means that the QVNS chip performs well under microwave radiation and can be used for synthesizing the AC quantum voltage reference noise.A single-frequency 100 kHz sinusoidal waveform is synthesized by the QVNS chip under pulse driven signal. A spectrum of the synthesized sinusoidal waveform shows a single peak, which means that the digital pulse signal is perfectly filtered by Josephson junction arrays and the synthesized signals possess quantum accuracy. The results indicate that our chip has good dynamic response and works well in synthesizing a single-frequency AC quantum voltage signal. This work can provide core devices for the noise thermometry system and support the precise measurement of Boltzmann constant as well as redefinition of Kelvin in future. As a next step, the design and package will be further improved, and the probe module will be optimized to reduce the measurement uncertainty.
      通信作者: 钟源, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn ; 李劲劲, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFF0200402)、国家自然科学基金(批准号:61771441)和国家自然科学基金青年基金(批准号:61701470)资助的课题.
      Corresponding author: Zhong Yuan, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn ; Li Jin-Jin, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2016YFF0200402) and the National Natural Science Foundation of China (Grant Nos. 61771441, 61701470).
    [1]

    Preston-Thomas H 1990 Metrologia 27 3

    [2]

    Mills I, Mohr P, Quinn T, Taylor B N, Williams E R 2006 Metrologia 43 227

    [3]

    Nyquist H 1928 Phys. Rev. 32 110

    [4]

    Johnson J B 1927 Nature 119 50

    [5]

    Brixy H 1971 Nucl. Instrum. Methods 97 75

    [6]

    Jeanneret B, Benz S P 2009 Eur. Phys. J. Special Topics 172 181

    [7]

    Benz S P, Dresselhaus P D, Martinis J M 2003 IEEE Trans. Instrum. Meas. 52 545

    [8]

    Benz S P, Dresselhaus P D, Burroughs C J 2011 IEEE Trans. Appl. Supercond. 21 681

    [9]

    Nam S W, Benz S P, Dresselhaus P D, Burroughs C J, Tew W L, White D R, Martinis J M 2005 IEEE Trans. Instrum. Meas. 54 653

    [10]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [11]

    Yamazawa K, Urano C, Yamada T, Horie T, Yoshida S, Yamamori H, Kaneko N, Fukuyama Y, Maruyama M, Domae A, Tamba J, Kiryu S 2014 Int. J. Thermophys. 35 985

    [12]

    Maezawa M, Yamada T, Urano C 2014 J. Phys.:Conf. Ser. 507 042023

    [13]

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304 (in Chinese)[曹文会, 李劲劲, 钟青, 郭晓玮, 贺青, 迟宗涛 2012 61 170304]

    [14]

    Watanabe M, Dresselhaus P D, Benz S P 2006 IEEE Trans. Appl. Supercond. 16 49

    [15]

    Olaya D, Dresselhaus P D, Benz S P, Bjarnason J, Grossman E N 2009 IEEE Trans. Appl. Supercond. 19 144

    [16]

    Liu J S, Li J Y, Li T Z, Li T F, Wu W, Chen W 2009 IEEE Trans. Appl. Supercond. 19 245

    [17]

    Wang L R, Zhong Y, Li J J, Cao W H, 2018 Mater. Res. Exp. 5 046410

    [18]

    Quinn T J 1989 Metrologia 26 69

    [19]

    Zhou K L 2017 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[周琨荔 2017 博士学位论文(北京:清华大学)]

    [20]

    Qu J F, Fu Y F, Zhang J Q, Rogalla H, Pollarolo A, Benz S P 2013 IEEE Trans. Instrum. Meas. 62 1518

  • [1]

    Preston-Thomas H 1990 Metrologia 27 3

    [2]

    Mills I, Mohr P, Quinn T, Taylor B N, Williams E R 2006 Metrologia 43 227

    [3]

    Nyquist H 1928 Phys. Rev. 32 110

    [4]

    Johnson J B 1927 Nature 119 50

    [5]

    Brixy H 1971 Nucl. Instrum. Methods 97 75

    [6]

    Jeanneret B, Benz S P 2009 Eur. Phys. J. Special Topics 172 181

    [7]

    Benz S P, Dresselhaus P D, Martinis J M 2003 IEEE Trans. Instrum. Meas. 52 545

    [8]

    Benz S P, Dresselhaus P D, Burroughs C J 2011 IEEE Trans. Appl. Supercond. 21 681

    [9]

    Nam S W, Benz S P, Dresselhaus P D, Burroughs C J, Tew W L, White D R, Martinis J M 2005 IEEE Trans. Instrum. Meas. 54 653

    [10]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [11]

    Yamazawa K, Urano C, Yamada T, Horie T, Yoshida S, Yamamori H, Kaneko N, Fukuyama Y, Maruyama M, Domae A, Tamba J, Kiryu S 2014 Int. J. Thermophys. 35 985

    [12]

    Maezawa M, Yamada T, Urano C 2014 J. Phys.:Conf. Ser. 507 042023

    [13]

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304 (in Chinese)[曹文会, 李劲劲, 钟青, 郭晓玮, 贺青, 迟宗涛 2012 61 170304]

    [14]

    Watanabe M, Dresselhaus P D, Benz S P 2006 IEEE Trans. Appl. Supercond. 16 49

    [15]

    Olaya D, Dresselhaus P D, Benz S P, Bjarnason J, Grossman E N 2009 IEEE Trans. Appl. Supercond. 19 144

    [16]

    Liu J S, Li J Y, Li T Z, Li T F, Wu W, Chen W 2009 IEEE Trans. Appl. Supercond. 19 245

    [17]

    Wang L R, Zhong Y, Li J J, Cao W H, 2018 Mater. Res. Exp. 5 046410

    [18]

    Quinn T J 1989 Metrologia 26 69

    [19]

    Zhou K L 2017 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[周琨荔 2017 博士学位论文(北京:清华大学)]

    [20]

    Qu J F, Fu Y F, Zhang J Q, Rogalla H, Pollarolo A, Benz S P 2013 IEEE Trans. Instrum. Meas. 62 1518

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟.  , 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应.  , 2023, 72(23): 237402. doi: 10.7498/aps.72.20231815
    [3] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺.  , 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [4] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算.  , 2021, 70(17): 170304. doi: 10.7498/aps.70.20210393
    [5] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法.  , 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [6] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用.  , 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [7] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征.  , 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [8] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制.  , 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [9] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化.  , 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [10] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析.  , 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [11] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [12] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [13] 王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林. SrTiO3基片上Tl-2212双晶约瑟夫森结的动态特性及噪声影响研究.  , 2009, 58(10): 7216-7221. doi: 10.7498/aps.58.7216
    [14] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正.  , 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [15] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为.  , 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [16] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究.  , 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [17] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠.  , 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [18] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质.  , 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [19] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟.  , 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
    [20] 姚希贤. 关于电阻分路约瑟夫森结的解析解.  , 1978, 27(5): 559-568. doi: 10.7498/aps.27.559
计量
  • 文章访问数:  8366
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-02-19
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map