搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽带立体超透镜的远场超分辨率成像

高强 王晓华 王秉中

引用本文:
Citation:

基于宽带立体超透镜的远场超分辨率成像

高强, 王晓华, 王秉中

Far-field super-resolution imaging based on wideband stereo-metalens

Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong
PDF
导出引用
  • 为突破传统衍射极限实现远场超分辨率成像,提出了一种微波频段宽带立体超透镜用于目标远场超分辨率成像.该透镜可将携带着目标超分辨率信息的凋落波分量转换为传播波分量辐射到远场,进而可在远场接收这些信息并用于超分辨率成像.分别从频域和时域两方面对该透镜的超分辨率特性进行验证.在频域,利用多重信号分类算法对借助于该结构的扩展目标实现了/12的远场超分辨率成像,大幅度提升了成像效果.在时域,结合时间反演技术,验证了带宽提升对空间超分辨率聚焦特性带来的明显优势.
    The resolution of traditional far-field imaging system is generally restricted by half of wavelength of incident light due to the diffraction limit. The reason is that evanescent waves carrying subwavelength information cannot propagate in the far-field and make no contribution to the imaging. To realize the far-field super-resolution imaging, the imaging system should be able to collect both propagation and evanescent waves. Many ideas were presented to provide feasible alternatives but with narrow frequency band. In this paper, a wideband metalens is proposed to realize far-field super-resolution based on stereometamaterials. A typical model of stereometamaterials is studied, which consist of a stack of two identical spiral resonators in each cell, with various twist angles. For each case, there are two observable resonances (-and +), obviously. The phenomenon can be explained as the plasmon hybridization between the two resonators due to their close proximity. The case with a twist angle of 90 is chosen as the basic cell to constitute the stereo-metalens (S-ML). The last S-ML can work in a frequency range from 1.06 to 1.53 GHz, which is much wider than the planar-metalens. Simulations of near-and far-field spectra are conducted to validate the conversion between evanescent waves and propagation waves. Then with the help of antennas in the far-field to receive the information, sub-wavelength image can be reconstructed. The simulations in frequency-and time-domain are performed to verify the super-resolution characteristics of the S-ML. In frequency-domain, an imaging simulation of L-shaped extended target is combined with multiple signal classification imaging method. The resolution defined by full width at half maximum is 19 mm, corresponding to /12. For comparison, a similar simulation without the S-ML is performed, indicating a resolution of 1.5. It shows the ability of the S-ML to enhance the imaging resolution. In time-domain, by using time reversal technique, the spatial super-resolution characteristic of the S-ML is validated. Compared with the planar-metalens, the S-ML has good spatial super-resolution characteristic. All results show that the S-ML has a good potential application in imaging.
      通信作者: 王晓华, xhwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61571085,61331007,6160187,61301271)资助的课题.
      Corresponding author: Wang Xiao-Hua, xhwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571085, 61331007, 6160187, 61301271).
    [1]

    Merlin R 2007 Science 317 927

    [2]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511

    [3]

    Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159

    [4]

    Zhu S X 2000 Opt. Instrum. 22 34 (in Chinese) [祝生祥 2000 光学仪器 22 34]

    [5]

    Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651

    [6]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [7]

    Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345

    [8]

    Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534

    [9]

    Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101 (in Chinese) [杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 61 164101]

    [10]

    Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [11]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [12]

    L C, Li W, Jiang X Y, Cao J C 2014 Europhys. Lett. 105 28003

    [13]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901

    [14]

    Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614

    [15]

    Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102

    [16]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507

    [17]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131

    [18]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586

    [19]

    Zheng B, Zhang R R, Zhou M, Zhang W B, Lin S S, Ni Z H, Wang H P, Yu F X, Chen H S 2014 Appl. Phys. Lett. 104 073502

    [20]

    Liu N, Liu H, Zhu S, Giessen H 2009 Nat. Photon. 3 157

    [21]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [22]

    Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827

    [23]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899

    [24]

    Cheney M 2001 Inverse Prob. 17 591

    [25]

    Gruber F K, Marengo E A, Devaney A J 2004 J. Acoust. Soc. Am. 115 3042

    [26]

    Fink M 1992 IEEE Trans. Ultrason. Ferroeletr. Freq. Control 39 555

    [27]

    Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904

  • [1]

    Merlin R 2007 Science 317 927

    [2]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511

    [3]

    Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159

    [4]

    Zhu S X 2000 Opt. Instrum. 22 34 (in Chinese) [祝生祥 2000 光学仪器 22 34]

    [5]

    Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651

    [6]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [7]

    Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345

    [8]

    Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534

    [9]

    Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101 (in Chinese) [杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 61 164101]

    [10]

    Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [11]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [12]

    L C, Li W, Jiang X Y, Cao J C 2014 Europhys. Lett. 105 28003

    [13]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901

    [14]

    Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614

    [15]

    Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102

    [16]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507

    [17]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131

    [18]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586

    [19]

    Zheng B, Zhang R R, Zhou M, Zhang W B, Lin S S, Ni Z H, Wang H P, Yu F X, Chen H S 2014 Appl. Phys. Lett. 104 073502

    [20]

    Liu N, Liu H, Zhu S, Giessen H 2009 Nat. Photon. 3 157

    [21]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [22]

    Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827

    [23]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899

    [24]

    Cheney M 2001 Inverse Prob. 17 591

    [25]

    Gruber F K, Marengo E A, Devaney A J 2004 J. Acoust. Soc. Am. 115 3042

    [26]

    Fink M 1992 IEEE Trans. Ultrason. Ferroeletr. Freq. Control 39 555

    [27]

    Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904

  • [1] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正.  , 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [2] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [3] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [4] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [5] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像.  , 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像.  , 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [7] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [8] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [9] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [10] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [11] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [12] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究.  , 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [13] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备.  , 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证.  , 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [15] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体.  , 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [17] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究.  , 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [18] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [19] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [20] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
计量
  • 文章访问数:  7534
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-07
  • 修回日期:  2018-01-04
  • 刊出日期:  2018-05-05

/

返回文章
返回
Baidu
map