-
近年来,双重复频率锁模激光器在诸如双光梳光谱和异步光学采样等应用领域吸引了广泛关注.基于单一激光腔的双梳系统能大大降低成本,简化系统结构,且性能优异.双重复频率锁模激光器为发展紧凑型和实用型双梳装置开辟了道路.本文报道了一种可用作双光梳光谱系统光源的双重复频率锁模Yb:YAG陶瓷激光器.该激光器基于半导体可饱和吸收镜锁模技术,采用双通道抽运结构,利用新型非水基流延成型制备的Yb:YAG透明陶瓷,在单一的五镜腔中,当吸收抽运光功率为5.6 W时,实现了自启动、稳定运转的双重复频率锁模脉冲Pulse1和Pulse2,其重复频率分别为448.918和448.923 MHz,重复频率差为5 kHz.在吸收抽运功率为7 W时,得到最大的总平均输出功率170 mW,其中Pulse1和Pulse2的功率分别为89和81 mW,相应的光谱宽度分别为1和1.16 nm.性能相似的双重复频率脉冲彼此间保持了良好的相干性,实验结果证明了双通道抽运在双重复频率锁模激光器应用中的可行性,此种新型双重复频率激光器在双光梳光谱和测距等领域具有较好的应用潜力.In recent years, dual repetition-rate mode-locked lasers with slightly different pulse repetition rates, as newly developed ultrafast lasers, have attracted great interest and shown their applications in ultrafast dual-comb spectroscopy, asynchronous optical sampling without mechanical movement, etc. The traditional dual-comb system composed of a pair of independent optical frequency combs with slightly detuned comb spacing is still considered expensive, complex and fragile. It is imperative to develop practical and compact dual-comb devices. Dual repetition-rate ultrafast lasers generating asynchronous ultrafast pulses directly from a single cavity can be a promising alternative to the current dual-laser-based comb source. A dual-comb setup based on single laser has the advantages of compact structure, low cost and intrinsic mutual coherence. This technique paves the way for developing the compact, robust and environmental-immune dual-comb systems. In this paper we develop an alternative dual repetition-rate mode-locked Yb:YAG ceramic laser that emits a pair of pulses with spatially separated beams from a single cavity by using a semiconductor saturable absorber mirror and a dual-path pump configuration. In our experiment, a high quality transparent Yb:YAG ceramic prepared by non-aqueous taper-casting method is selected as the gain medium, which is pumped by a 940 nm laser diode. A dual-path pump configuration consisting of a pair of polarization beam splitters and a pair of half-wave plates is designed, in which total pump power from a laser diode is divided equally for pumping the two separate laser beams. When the total absorbed pump power is 5.6 W, dual repetition-rate continuous mode-locked laser operation is achieved under the gain-loss balanced cavity condition. The pulse repetition rates of Pulse1 and Pulse2 are 448.918 MHz and 448.923 MHz, respectively. The difference between repetition rates is 5 kHz mainly caused by the different optical path lengths in the cavity. Under an absorbed pump power of 7 W, the maximum total output power extracted from this laser reaches 170 mW, i.e., 89 mW for Pulse1 and 81 mW for Pulse2. The two mode-locked pulses have nearly identical spectral shapes centered at 1029.6 nm and 1029.8 nm, respectively. The spectral bandwidths for Pulse1 and Pulse2 are 1 nm and 1.16 nm, respectively. The corresponding pulse durations are 2.8 ps and 2.6 ps for the Pulse1 and Pulse2 respectively. Our scheme integrates the advantages of self-starting operation, high repetition-rate, suppression of gain competition. These results indicate that dual-path pump configuration is feasible for dual-repetition-rate mode-locked lasers. These co-generated, dual repetition-rate pulses from one laser cavity possess similar laser characteristics and can be operated independently by dual-path pump configuration. This laser has potential advantages of compact, cost-effective and high-stability for single-cavity-based dual-comb applications in dual-comb spectroscopy, distance ranging, etc.
[1] Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542
[2] Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029
[3] Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902
[4] Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55
[5] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[6] Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597
[7] Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107
[8] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[9] Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521
[10] Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833
[11] Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104
[12] Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748
[13] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164
[14] Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937
[15] Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20
[16] Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3
[17] Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5
[18] Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111
[19] Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330
[20] Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433
[21] Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289
[22] Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3
[23] Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351
[24] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884
-
[1] Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542
[2] Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029
[3] Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902
[4] Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55
[5] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[6] Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597
[7] Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107
[8] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[9] Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521
[10] Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833
[11] Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104
[12] Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748
[13] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164
[14] Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937
[15] Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20
[16] Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3
[17] Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5
[18] Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111
[19] Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330
[20] Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433
[21] Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289
[22] Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3
[23] Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351
[24] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884
计量
- 文章访问数: 7168
- PDF下载量: 241
- 被引次数: 0