搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性

赵博硕 强晓永 秦岳 胡明

引用本文:
Citation:

氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性

赵博硕, 强晓永, 秦岳, 胡明

Tungsten oxide nanowire gas sensor preparation and P-type NO2 sensing properties at room temperature

Zhao Bo-Shuo, Qiang Xiao-Yong, Qin Yue, Hu Ming
PDF
导出引用
  • 纳米结构的氧化钨有高比表面积和气体吸附能力,在气体传感器领域得到了广泛研究.本文采用磁控溅射金属钨薄膜和两步热氧化工艺在二氧化硅衬底上生长出氧化钨纳米线.通过改变第二步氧化温度,研究退火温度对氧化钨纳米线气敏特性的影响.采用扫描电子显微镜、X射线衍射仪、X射线光电子能谱分析仪和透射射电子显微镜表征材料的微观特性和晶体结构,利用静态配气法测试气敏性能.研究结果表明,经过退火处理后氧化钨纳米线密度略微降低,300℃比400℃退火后的氧化钨结晶性差,对应的表面态含量多,有利于室温气体敏感性.测试NO2的气敏性能,经过对比得出300℃退火温度下制备的氧化钨纳米线在室温下表现出较很好的气敏响应,对6 ppm(1 ppm=10-6)NO2达到2.5,对检测极限0.5 ppm NO2响应达1.37.氧化钨纳米线在室温下表现出反常的P型响应,是因为氧化钨纳米线表面被氧气吸附形成反型层,空穴取代电子成为主要载流子所致.
    Gas sensor has been widely used to monitor the air quality. Metal oxide semiconductor (MOS) is one of the most popular materials used for gas sensors due to its low-cost, easy preparation and good sensing properties. However, the working temperature of tungsten oxide gas sensor is still high, which restricts its applications in special environment. Researchers try to lower the working temperature of WO3 by doping or changing morphology. Tungsten oxide nanowire has great potential to be applied to the gas sensing field because of its high specific surface area. In this work, one-dimensional WO3 nanowire structure is synthesized by sputtering W and followed by the twostep thermally oxidation method. The first step of oxidation is carried out in vacuum tube furnace to obtain the WO2 nanowires and the second step of oxidation is an air annealing treatment in which we will control the temperatures (S0, without treatment; S1, 300℃; S2, 400℃) to study the morphologies and gas sensing properties. The obtained WO3 nanowires are investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM) techniques. The SEM results indicate that WO3 nanowires grow along different directions in space. Nanowires have an average length of 1 μm and a diameter of 40 nm. Besides, nanowires have better crystallinity after higher-temperature (400℃) annealing as indicated by the XRD results, which means less surface defects and surface states. The XPS spectrum indicates the existence of oxygen vacancy in nanowires after 300℃ annealing. The TEM results show that nanowires preferred growth direction is changed after different annealing treatments and the crystal lattice of nanowires after 400℃ has better order than that of nanowires after 300℃. The influences of annealing temperature in the second step on the sensing properties to variousconcentration NO2 gases are investigated at working temperature ranging from room temperature (RT) to 150℃. The results show that the WO3 nanowires after 300℃ annealing show better response than after 400℃ annealing and without annealing treatment. The best response of nanowires to 6 ppm NO2 is 2.5 at RT after 300℃ annealing treatment, and the lowest NO2 detection limit is 0.5 ppm. The room temperature enhancement in gas sensing property may be attributed to the large WO3 nanowire surface states caused by oxidation degree controlled twostep thermal oxidation method. Besides, p-type response to testing gas is found. This might be caused by the lattice defect and the adsorption of oxygen from atmosphere which leads to the formation of surface inversion layer. And the dominated carriers of nanowires will convert from electrons into holes. In conclusion, these results demonstrate that the WO3 nanowires have great potential applications in future NO2 gas detection with low consumption and good performance.
      通信作者: 胡明, huming@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61271070)资助的课题.
      Corresponding author: Hu Ming, huming@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271070).
    [1]

    Chen H, Cai H, Zhang Y 2017 J. EMCC 27 68 (in Chinese) [陈滑维, 蔡浩洋, 张阳 2017 中国环境管理干部学院学报 27 68]

    [2]

    Fonollosa J, Lrene R L, Abhijit V S, Margie L H, Margaret A R, Ramon H 2014 Sens. Actuators B 199 398

    [3]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [4]

    Yao Y, Yin M, Yan J, Yang D, Liu S 2017 Sens. Actuators B 251 583

    [5]

    Wei S, Zhao J, Hu B, Wu K, Du W, Zhou M 2017 Ceram. Int. 43 2579

    [6]

    Barbara U, Vincent T A, Chowdhury M F, Gardner J W 2017 Sens. Actuators B 239 1051

    [7]

    Zeng W, Dong C, Miao B, Zhang H, Xu S, Ding X, Hussain S 2014 Mater. Lett. 117 41

    [8]

    Hemberg A, Konstantinidis S, Viville P, Renaux F, Dauchot J P, Llobet E, Snyders R 2012 Sens. Actuators B 171–172 18

    [9]

    Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H, Patil P S 2017 Sens. Actuators B 240 426

    [10]

    Hieu N V, Vuong H V, Duy N V, Hoa N D 2012 Sens. Actuators B 171–172 760

    [11]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [12]

    Luo J Y, Chen F, Cao Z, Zheng W H, Liu C H, Li Y D, Yang G T, Zeng G Q 2015 Cryst. Eng. Comm. 17 889

    [13]

    Ma S, Hu M, Zeng P, Li M, Yan W, Qin Y 2014 Sens. Actuators B 192 341

    [14]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B 186 140

    [15]

    Li M, Hu M, Zeng P, Ma S, Yan W, Qin Y 2013 Electrochim. Acta 108 167

    [16]

    Boyadijev S I, Georgieva V, Stefan N, Stan G E, Mihailescu N, Visan A, Mihailescu I N, Besleaga C, Szilagyi I M 2017 Appl. Surf. Sci. 417 218

    [17]

    Jie X, Zeng D, Zhang J, Xu K, Wu, J, Zhu B, Xie C 2015 Sens. Actuators B 220 201

    [18]

    Wei Y, Chen C, Yuan G, Gao S 2016 J. Alloys Compd. 681 43

    [19]

    Shen Y, Zhao S, Ma J, Chen X, Wang W, Wei D, Gao S, Liu W, Han C, Cui B 2016 J. Alloys Compd. 664 229

    [20]

    Qin Y X, Liu K X, Liu C Y, Sun X B 2013 Acta Phys. Sin. 62 208104 (in Chinese) [秦玉香, 刘凯轩, 刘长雨, 孙学斌 2013 62 208104]

    [21]

    Li H, Xie W, Ye T, Liu B, Xiao S, Wang C, Wang Y, Li Q, Wang T 2015 Appl. Mater. Interfaces 7 24887

    [22]

    Zhang C, Debliquy M, Boudiba A, Liao H, Coddet C 2010 Sens. Actuators B 144 280

    [23]

    Xu L, Wang C, Zhang X, Guo D, Pan Q, Zhang G, Wang S 2017 Sens. Actuators B 245 533

    [24]

    Wu Y Q, Hu M, Wei X Y 2014 Chin. Phys. B 23 040704

    [25]

    Yan W, Hu M, Zeng P, Ma S, Li M 2014 Appl. Surf. Sci. 292 551

    [26]

    Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y 2017 Appl. Surf. Sci. 391 654

    [27]

    Liu E K, Zhu B S, Luo J S 2013 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp93-94 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2013 半导体物理学(第七版)(北京: 电子工业出版社)第93–94页]

  • [1]

    Chen H, Cai H, Zhang Y 2017 J. EMCC 27 68 (in Chinese) [陈滑维, 蔡浩洋, 张阳 2017 中国环境管理干部学院学报 27 68]

    [2]

    Fonollosa J, Lrene R L, Abhijit V S, Margie L H, Margaret A R, Ramon H 2014 Sens. Actuators B 199 398

    [3]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [4]

    Yao Y, Yin M, Yan J, Yang D, Liu S 2017 Sens. Actuators B 251 583

    [5]

    Wei S, Zhao J, Hu B, Wu K, Du W, Zhou M 2017 Ceram. Int. 43 2579

    [6]

    Barbara U, Vincent T A, Chowdhury M F, Gardner J W 2017 Sens. Actuators B 239 1051

    [7]

    Zeng W, Dong C, Miao B, Zhang H, Xu S, Ding X, Hussain S 2014 Mater. Lett. 117 41

    [8]

    Hemberg A, Konstantinidis S, Viville P, Renaux F, Dauchot J P, Llobet E, Snyders R 2012 Sens. Actuators B 171–172 18

    [9]

    Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H, Patil P S 2017 Sens. Actuators B 240 426

    [10]

    Hieu N V, Vuong H V, Duy N V, Hoa N D 2012 Sens. Actuators B 171–172 760

    [11]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [12]

    Luo J Y, Chen F, Cao Z, Zheng W H, Liu C H, Li Y D, Yang G T, Zeng G Q 2015 Cryst. Eng. Comm. 17 889

    [13]

    Ma S, Hu M, Zeng P, Li M, Yan W, Qin Y 2014 Sens. Actuators B 192 341

    [14]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B 186 140

    [15]

    Li M, Hu M, Zeng P, Ma S, Yan W, Qin Y 2013 Electrochim. Acta 108 167

    [16]

    Boyadijev S I, Georgieva V, Stefan N, Stan G E, Mihailescu N, Visan A, Mihailescu I N, Besleaga C, Szilagyi I M 2017 Appl. Surf. Sci. 417 218

    [17]

    Jie X, Zeng D, Zhang J, Xu K, Wu, J, Zhu B, Xie C 2015 Sens. Actuators B 220 201

    [18]

    Wei Y, Chen C, Yuan G, Gao S 2016 J. Alloys Compd. 681 43

    [19]

    Shen Y, Zhao S, Ma J, Chen X, Wang W, Wei D, Gao S, Liu W, Han C, Cui B 2016 J. Alloys Compd. 664 229

    [20]

    Qin Y X, Liu K X, Liu C Y, Sun X B 2013 Acta Phys. Sin. 62 208104 (in Chinese) [秦玉香, 刘凯轩, 刘长雨, 孙学斌 2013 62 208104]

    [21]

    Li H, Xie W, Ye T, Liu B, Xiao S, Wang C, Wang Y, Li Q, Wang T 2015 Appl. Mater. Interfaces 7 24887

    [22]

    Zhang C, Debliquy M, Boudiba A, Liao H, Coddet C 2010 Sens. Actuators B 144 280

    [23]

    Xu L, Wang C, Zhang X, Guo D, Pan Q, Zhang G, Wang S 2017 Sens. Actuators B 245 533

    [24]

    Wu Y Q, Hu M, Wei X Y 2014 Chin. Phys. B 23 040704

    [25]

    Yan W, Hu M, Zeng P, Ma S, Li M 2014 Appl. Surf. Sci. 292 551

    [26]

    Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y 2017 Appl. Surf. Sci. 391 654

    [27]

    Liu E K, Zhu B S, Luo J S 2013 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp93-94 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2013 半导体物理学(第七版)(北京: 电子工业出版社)第93–94页]

  • [1] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [2] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究.  , 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [3] 方成, 汪洪, 施思齐. 氧化钨电致变色性能的研究进展.  , 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [4] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算.  , 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [5] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [6] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能.  , 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [7] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [8] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [9] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [10] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [11] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [12] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究.  , 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [13] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究.  , 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [14] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [15] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [16] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究.  , 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [17] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [18] 于冬亮, 都有为. NiFe2O4纳米线阵列的制备与磁性.  , 2005, 54(2): 930-934. doi: 10.7498/aps.54.930
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  7709
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 修回日期:  2017-12-21
  • 刊出日期:  2018-03-05

/

返回文章
返回
Baidu
map