搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有三体相互作用的S=1自旋链中的保真率和纠缠熵

任杰 顾利萍 尤文龙

引用本文:
Citation:

带有三体相互作用的S=1自旋链中的保真率和纠缠熵

任杰, 顾利萍, 尤文龙

Fidelity susceptibility and entanglement entropy in S=1 quantum spin chain with three-site interactions

Ren Jie, Gu Li-Ping, You Wen-Long
PDF
导出引用
  • 研究了带有次近邻和三体相互作用的S=1自旋链的保真率和纠缠熵.通过密度矩阵重整化群数值方法计算了三体相互作用对保真率的影响,并分析了其与量子相变的关系.研究表明保真率可以探测Haldane相与二聚物相之间的相变.此外还研究了该相变与量子纠缠熵的关系.通过保真率和量子纠缠熵这两个信息观测量得到的结果和弦序参量得到的结果一致.在此基础之上给出了相图.
    In the present work, we study the fidelity susceptibility and the entanglement entropy in an antiferromagnetic spin-1 chain with additional next-nearest neighbor interactions and three-site interactions, which are given by H=(J1SiSi+1+ J2SiSi+2)+[J3(SiSi+1)(Si+1Si+2)+ h.c.]. By using the density matrix renormalization group method, the ground-state properties of the system are calculated with very high accuracy. We investigate the effect of the three-site interaction J3 on the fidelity susceptibility numerically, and then analyze its relation with the quantum phase transition (QPT). The fidelity measures the similarity between two states, and the fidelity susceptibility describes the associated changing rate. The QPT is intuitively accompanied by an abrupt change in the structure of the ground-state wave function, so generally a peak of the fidelity susceptibility indicates a QPT and the location of the peak denotes the critical point. For the case of J2=0, a peak of the fidelity susceptibility is found by varying J3, and the height of the peak grows as the system size increases. The location of the peak shifts to a slightly lower J3 up to a particular value as the system size increases. Through a finite size scaling, the critical point J3c=0.111 of the QPT from the Haldane spin liquid to the dimerized phase is identified. We also study the effect of the three-site interaction on the entanglement entropy between the right half part and the rest. It is noted that the peak of the entanglement entropy does not coincide with the critical point. Instead, the critical point is determined by the position at which the first-order derivative of the entanglement entropy takes its minimum, since a second-order QPT is signaled by the first derivative of density matrix element. Moreover, the entanglement entropy disappears when J3=1/6, which corresponds to the size-independent Majumdar-Ghosh point. The positions of quantum critical points extracted from these two quantum information observables agree well with those obtained by the string order parameters, which characterizes the topological order in the Haldane phase. Secondly, we also study the case of J20, and obtain the critical points by both the fidelity susceptibility and the entanglement entropy. Finally we provide a ground-state phase diagram of the system. To sum up, the quantum information observables are effective tools for detecting diverse QPTs in spin-1 models.
      通信作者: 任杰, jren@cslg.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374043,11474211)资助的课题.
      Corresponding author: Ren Jie, jren@cslg.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374043, 11474211).
    [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) p133

    [2]

    den Nijs M, Rommelse K 1989 Phys. Rev. B 40 4709

    [3]

    Chen W, Hida K, Sanctuary B C 2003 Phys. Rev. B 67 104401

    [4]

    Degli Esposti Boschi C, Ercolessi E, Ortolani F, Roncaglia M 2003 Eur. Phys. J. B 35 465

    [5]

    Darriet J, Regnault L 1993 Solid State Commun. 86 409

    [6]

    Buyers W J L, Morra R M, Armstrong R L, Hogan M J, Gerlach P, Hirakawa K 1986 Phys. Rev. Lett. 56 371

    [7]

    Singh K, Basu T, Chowki S, Mahapotra N, Iyer K K, Paulose P L, Sampathkumaran E V 2013 Phys. Rev. B 88 094438

    [8]

    Zheludev A, Tranquada J M, Vogt T, Buttrey D J 1996 Phys. Rev. B 54 7210

    [9]

    Li W, Andreas W, Delft J V 2013 Phys. Rev. B 88 245121

    [10]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [11]

    Cozzini M, Ionicioiu R, Zanardi P 2007 Phys. Rev. B 76 104420

    [12]

    Ren J, Zhu S Q 2008 Eur. Phys. J. D 50 103

    [13]

    Ren J, Xu X F, Gu L P, Li J L 2012 Phys. Rev. A 86 064301

    [14]

    Ren J, Liu G H, You W L 2015 J. Phys.: Condens. Matter 27 105602

    [15]

    Ren J, Zhu S Q 2009 Phys. Rev. A 79 034302

    [16]

    Liu G H, Wang H L, Tian G S 2008 Phys. Rev. B 77 214418

    [17]

    Zhao J H 2012 Acta Phys. Sin. 61 220501 (in Chinese)[赵建辉 2012 61 220501]

    [18]

    White S R 1993 Phys. Rev. B 48 10345

    [19]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259

    [20]

    Chepiga N, Affleck I, Mila F 2016 Phys. Rev. B 93 241108

    [21]

    Michaud F, Vernay F, Manmana S R, Mila F 2012 Phys. Rev. Lett. 108 127202

    [22]

    Wu L A, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [23]

    Gu S J 2010 Int. J. Mod. Phys. B 24 4371

    [24]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

  • [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) p133

    [2]

    den Nijs M, Rommelse K 1989 Phys. Rev. B 40 4709

    [3]

    Chen W, Hida K, Sanctuary B C 2003 Phys. Rev. B 67 104401

    [4]

    Degli Esposti Boschi C, Ercolessi E, Ortolani F, Roncaglia M 2003 Eur. Phys. J. B 35 465

    [5]

    Darriet J, Regnault L 1993 Solid State Commun. 86 409

    [6]

    Buyers W J L, Morra R M, Armstrong R L, Hogan M J, Gerlach P, Hirakawa K 1986 Phys. Rev. Lett. 56 371

    [7]

    Singh K, Basu T, Chowki S, Mahapotra N, Iyer K K, Paulose P L, Sampathkumaran E V 2013 Phys. Rev. B 88 094438

    [8]

    Zheludev A, Tranquada J M, Vogt T, Buttrey D J 1996 Phys. Rev. B 54 7210

    [9]

    Li W, Andreas W, Delft J V 2013 Phys. Rev. B 88 245121

    [10]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [11]

    Cozzini M, Ionicioiu R, Zanardi P 2007 Phys. Rev. B 76 104420

    [12]

    Ren J, Zhu S Q 2008 Eur. Phys. J. D 50 103

    [13]

    Ren J, Xu X F, Gu L P, Li J L 2012 Phys. Rev. A 86 064301

    [14]

    Ren J, Liu G H, You W L 2015 J. Phys.: Condens. Matter 27 105602

    [15]

    Ren J, Zhu S Q 2009 Phys. Rev. A 79 034302

    [16]

    Liu G H, Wang H L, Tian G S 2008 Phys. Rev. B 77 214418

    [17]

    Zhao J H 2012 Acta Phys. Sin. 61 220501 (in Chinese)[赵建辉 2012 61 220501]

    [18]

    White S R 1993 Phys. Rev. B 48 10345

    [19]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259

    [20]

    Chepiga N, Affleck I, Mila F 2016 Phys. Rev. B 93 241108

    [21]

    Michaud F, Vernay F, Manmana S R, Mila F 2012 Phys. Rev. Lett. 108 127202

    [22]

    Wu L A, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [23]

    Gu S J 2010 Int. J. Mod. Phys. B 24 4371

    [24]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变.  , 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩.  , 2024, 73(24): . doi: 10.7498/aps.73.20241103
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变.  , 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [5] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2021, (): . doi: 10.7498/aps.70.20211433
    [6] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相.  , 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [7] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变.  , 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [9] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变.  , 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [10] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数.  , 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [11] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变.  , 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [12] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究.  , 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [13] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变.  , 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [14] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变.  , 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图.  , 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [17] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变.  , 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变.  , 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [19] 张松俊, 蒋建军, 刘拥军. 阻挫诱导的亚铁磁性Heisenberg系统中的量子相变.  , 2008, 57(1): 531-534. doi: 10.7498/aps.57.531
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径.  , 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  7087
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2017-10-13
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map