搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位调制激光多普勒频移测量方法的改进

杜军 杨娜 李峻灵 曲彦臣 李世明 丁云鸿 李锐

引用本文:
Citation:

相位调制激光多普勒频移测量方法的改进

杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐

Improvement of phase modulation laser Doppler shift measurement method

Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui
PDF
导出引用
  • 本文对现有相位调制激光多普勒频移测量方法进行了改进,通过定义新的鉴频参量来同时利用相位调制信号直流和交流分量中的有用信息进行多普勒频移测量.由于相位调制信号直流分量中包含着调制信号光的Fabry-Perot干涉仪光强透过率,所以这一改进本质上是将基于Fabry-Perot干涉仪的边缘技术激光多普勒频移测量方法的优势引入到相位调制测量方法中,以提高其自身的性能.理论上证明改进后的相位调制激光多普勒频移测量方法无需对信号光的光强进行测量,所以可以进一步简化探测系统的结构和较少噪声混入的通道.另外,通过对改进前后鉴频和测量灵敏度曲线进行对比,还证明了其具有更高的测量灵敏度和动态范围.实验上对硬目标反射的频移可控信号光进行测量,不但证明了理论的正确性,而且证明了改进后的相位调制激光多普勒频移测量方法,测量动态范围提高约1倍,测量标准偏差降低约35%.
    Sinusoidal phase-modulated signal light through the Fabry-Perot interferometer can produce a beat signal. Moreover, its amplitude monotonically changes with the signal light frequency. So the beat signal amplitude can be used to measure laser-Doppler-shift. In addition to the beat signal, the phase-modulated signal also contains a direct current (DC) signal, and it still contains a large amount of Doppler-shift information, but the information is not utilized, resulting in the waste of Doppler information. In this paper, this kind of phase-modulated laser-Doppler-shift measurement method is improved to simultaneously utilize the useful information in the DC and beat signal for the Doppler-shift measurement. The specific method is to use the ratio of beat signal amplitude to DC signal amplitude to define a new parameter used in Doppler-shift measurement. The signal light intensity terms in DC and beat signal can be eliminated, so the improved phase-modulated laser-Doppler-shift measurement method does not need to measure the signal light intensity, which makes its structure further simplified and a noise channel eliminated. By comparing the frequency change curves between the newly defined parameter and the beat signal amplitude theoretically, we find that they have the same distribution rule. This theoretical result shows that the improved phase-modulated laser-Doppler-shift measurement method will keep the same working mode as un-improved one, and can inherit its advantages. In theory, by comparing the measurement sensitivity curves, it is proved that the improved phase-modulated laser-Doppler-shift measurement method has higher measurement sensitivity and dynamic range than the un-improved one. The useful information included in the DC signal is the modulated signal light intensity transmittance of Fabry-Perot interferometer. So the improvement is essential to introduce the advantages of edge-technique laser-Doppler-shift measurement method based on the Fabry-Perot interferometer into the phase-modulated method for achieving higher performance. Two phase-modulated laser-Doppler-shift measurement methods before and after improvement are separately used to measure the frequency-shifted controllable signal light reflected by a hard object. The experimental results are in accordance with the theoretical analysis results very well. The comparison of experimental result between the two methods shows that the improved phase-modulated laser-Doppler-shift measurement method can approximately double the measurement dynamic range and reduce about 35% measurement standard deviation compared with the un-improved one.
      通信作者: 李峻灵, LLJJLL333@163.com
    • 基金项目: 黑龙江省自然科学基金(批准号:F2016030)资助的课题.
      Corresponding author: Li Jun-Ling, LLJJLL333@163.com
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2016030).
    [1]

    Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286

    [2]

    Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]

    [3]

    Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208]

    [4]

    Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726

    [5]

    Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676

    [6]

    Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208

    [7]

    Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 61 044207]

    [8]

    Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764

    [9]

    Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018

    [10]

    Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24

    [11]

    Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202

    [12]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 65 084206]

    [13]

    Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120

    [14]

    Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023

    [15]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [16]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 61 030702]

    [17]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 62 184206]

    [18]

    Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]

    [19]

    Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]

    [20]

    Eric D B 2001 Am. J. Phys. 69 79

    [21]

    Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]

    [22]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169

    [23]

    Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 66 184201]

  • [1]

    Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286

    [2]

    Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]

    [3]

    Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208]

    [4]

    Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726

    [5]

    Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676

    [6]

    Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208

    [7]

    Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 61 044207]

    [8]

    Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764

    [9]

    Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018

    [10]

    Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24

    [11]

    Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202

    [12]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 65 084206]

    [13]

    Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120

    [14]

    Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023

    [15]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [16]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 61 030702]

    [17]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 62 184206]

    [18]

    Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]

    [19]

    Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]

    [20]

    Eric D B 2001 Am. J. Phys. 69 79

    [21]

    Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]

    [22]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169

    [23]

    Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 66 184201]

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法.  , 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束.  , 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性.  , 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案.  , 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响.  , 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究.  , 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [8] 唐智灵, 于立娟, 李思敏. 基于高速移动通信的虚拟天线阵列理论研究.  , 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [9] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法.  , 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [10] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合.  , 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [11] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [12] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [13] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器.  , 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [14] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析.  , 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [15] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [16] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波.  , 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [17] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析.  , 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 朱 博, 桂永胜, 仇志军, 周文政, 姚 炜, 郭少令, 褚君浩, 张福甲. 窄禁带稀磁半导体二维电子气的拍频振荡.  , 2006, 55(2): 786-790. doi: 10.7498/aps.55.786
    [20] 侯岩雪, 马海强, 吴令安. 一种测量弱光拍频的方法.  , 2005, 54(2): 574-577. doi: 10.7498/aps.54.574
计量
  • 文章访问数:  6979
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-16
  • 修回日期:  2017-11-03
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map