搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奇异谱分析用于提升双光梳激光测距精度

曹辉 宋有建 于佳禾 师浩森 胡明列 王清月

引用本文:
Citation:

奇异谱分析用于提升双光梳激光测距精度

曹辉, 宋有建, 于佳禾, 师浩森, 胡明列, 王清月

Singular spectrum analysis for precision improvement in dual-comb laser ranging

Cao Hui, Song You-Jian, Yu Jia-He, Shi Hao-Sen, Hu Ming-Lie, Wang Qing-Yue
PDF
导出引用
  • 从含噪数据中提取信号从而提升数据采集系统精度是极为重要的问题.奇异谱分析(singular spectrum analysis,SSA)作为一种无参数频谱估计技术,广泛用于区分系统模型未知情况下的动态系统信号的复杂成分.本文应用SSA方法提取双光梳飞秒激光测距系统中的含噪时间序列的距离信息,数值仿真显示SSA方法可以从含有有色噪声的信号中提取距离信号.实验中,SSA方法成功地从含有量子噪声的测距信号中提取出激光与目标之间的距离信息,提取后的信号有13倍的精度提升.这种方法同样适用于高维信号,如基于飞秒激光测距的高精度、高速率表面形貌测量的图像提取.
    Optical methods in distance measurement, which are categorized by interferometry and time-of-flight (TOF) detection, have received widespread attention in recent years. However, interferometry cannot provide absolute distance and traditional TOF measurement cannot obtain a high precision measurement result either. The TOF ranging by femtosecond lasers, a novel precise measurement approach, enabling a sub-micrometer precision for long distance absolute ranging, can solve the problems above and has a wide application prospect in aerospace, remote sensing and surface profilometry. Particularly, a dual-comb ranging approach has attracted great attention due to high update rate (~kHz) and a simple system structure (i.e., working with free running mode-locked laser system). However, the quantum limited timing jitter of mode-locked lasers will inevitably introduce uncertainty into TOF estimation due to the equivalent sampling nature of a dual-comb scheme. As a result, the distance measurement precision is significantly degraded. Even though a simple multiple averaging can be used to alleviate this problem, the measurement speed is limited to a very low level, which is unacceptable to many applications. Moreover, multiple averaging fails in the presence of more complex noise sources. Singular spectrum analysis (SSA), known as a non-parametric spectral estimation technique, has been widely used in dynamic systems to distinguish complex patterns in signals without a priori knowledge of the dynamical model. In this paper, for the first time, we apply SSA to extract distance information from a noisy time series generated by a high update rate dual-comb ranging system. Numerical simulation shows that the SSA is a powerful tool for separating distance series into signal and random noise regardless its color. Specifically, we extract a one-dimensional step profile with high precision in the presence of violet noise (density proportional to f2). In experiment, a dual-comb ranging system is built based on two home-built polarization maintaining mode-locked fiber lasers by using carbon nanotube as saturable absorber. Their repetition rates are both about 74 MHz, their difference being about 2 kHz. We measure the distance of a moving target placed at ~0.5 m away from the range finder and use the SSA for signal extraction. The direct measurement precision is 1.9968 m rms at 200 Hz update rate. The SSA successfully separates the quantum noise from the ranging time series, resulting in 0.1522 m rms ranging precision, corresponding to about 13 times ranging precision improvement. This method can be further extended to high dimension, enabling high precision and high speed profilometry for complex surfaces based on femtosecond laser ranging.
      通信作者: 宋有建, yjsong@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675150,11527808,61535009)资助的课题.
      Corresponding author: Song You-Jian, yjsong@tju.edu.cn
    • Funds: Project supported by by the National Natural Science Foundation of China (Grant Nos. 61675150, 11527808, 61535009).
    [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Minoshima K, Matsumoto H 2000 Appl. Optics 39 5512

    [4]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [5]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [6]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang C Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 61 240601]

    [7]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese) [邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 62 170603]

    [8]

    Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602 (in Chinese) [张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 65 080602]

    [9]

    Shi H, Song Y, Liang F, Xu L, Hu M, Wang C 2015 Opt. Express 23 14057

    [10]

    Broomhead D S, King G P 1986 Physica . 20 217

    [11]

    Vautard R, Ghil M 1989 Physica . 35 395

    [12]

    Vautard R, Yiou P, Ghil M 1992 Physica . 58 95

    [13]

    Hassani H, Zhigljavsky A 2009 J. Syst. Sci. Complex. 22 372

    [14]

    Hassani H, Webster A, Silva E S, Heravi S 2015 Tourism Manage. 46 322

    [15]

    Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P 2013 J. Geodyn. 72 25

    [16]

    Zabalza J, Ren J, Wang Z, Marshall S, Wang J 2014 IEEE Geosci. Remote S. 11 1886

    [17]

    Zabalza J, Ren J, Wang Z, Zhao H, Wang J, Marshall S 2015 IEEE J. Sel. Top. Appl. 8 2845

    [18]

    Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S 2015 IEEE T. Geosci. Remote 53 4418

    [19]

    Rafert J B, Zabalza J, Marshall S, Ren J 2016 Appl. Spectrosc. 70 1582

  • [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Minoshima K, Matsumoto H 2000 Appl. Optics 39 5512

    [4]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [5]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [6]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang C Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 61 240601]

    [7]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese) [邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 62 170603]

    [8]

    Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602 (in Chinese) [张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 65 080602]

    [9]

    Shi H, Song Y, Liang F, Xu L, Hu M, Wang C 2015 Opt. Express 23 14057

    [10]

    Broomhead D S, King G P 1986 Physica . 20 217

    [11]

    Vautard R, Ghil M 1989 Physica . 35 395

    [12]

    Vautard R, Yiou P, Ghil M 1992 Physica . 58 95

    [13]

    Hassani H, Zhigljavsky A 2009 J. Syst. Sci. Complex. 22 372

    [14]

    Hassani H, Webster A, Silva E S, Heravi S 2015 Tourism Manage. 46 322

    [15]

    Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P 2013 J. Geodyn. 72 25

    [16]

    Zabalza J, Ren J, Wang Z, Marshall S, Wang J 2014 IEEE Geosci. Remote S. 11 1886

    [17]

    Zabalza J, Ren J, Wang Z, Zhao H, Wang J, Marshall S 2015 IEEE J. Sel. Top. Appl. 8 2845

    [18]

    Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S 2015 IEEE T. Geosci. Remote 53 4418

    [19]

    Rafert J B, Zabalza J, Marshall S, Ren J 2016 Appl. Spectrosc. 70 1582

  • [1] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述.  , 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [2] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 0(0): . doi: 10.7498/aps.7120220537
    [3] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [4] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器.  , 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [5] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征.  , 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [6] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响.  , 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [7] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器.  , 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [8] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量.  , 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [9] 刘睿, 李宏福, 牛新建. 回旋管谐振腔本征模式计算的新算法.  , 2011, 60(9): 090205. doi: 10.7498/aps.60.090205
    [10] 张淳民, 黃伟健, 赵葆常. 新型偏振干涉成像光谱仪噪声分析与评价.  , 2010, 59(8): 5479-5486. doi: 10.7498/aps.59.5479
    [11] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [12] 王振东, 梁变, 刘中波, 樊锡君. 飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播.  , 2010, 59(10): 7041-7049. doi: 10.7498/aps.59.7041
    [13] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响.  , 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [14] 何 亮, 杜 磊, 庄奕琪, 李伟华, 陈建平. 金属互连电迁移噪声的多尺度熵复杂度分析.  , 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [15] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器.  , 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [16] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [17] 何 亮, 杜 磊, 庄奕琪, 陈春霞, 卫 涛, 黄小君. 金属互连电迁移噪声的相关维数研究.  , 2007, 56(12): 7176-7182. doi: 10.7498/aps.56.7176
    [18] 田金荣, 韩海年, 赵研英, 王 鹏, 张 炜, 魏志义. 基于啁啾镜色散补偿技术的超宽带飞秒激光脉冲.  , 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [19] 王屹山, 刘红军, 程 昭, 赵 卫, 王勇刚, 马骁宇, 张志刚. 利用SBR实现自启动锁模钛宝石飞秒激光脉冲的产生.  , 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [20] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究.  , 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
计量
  • 文章访问数:  6163
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-09-18
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map