搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基质材料对Yb3+浓度调控的上转换荧光红绿比的影响

张翔宇 王丹 石焕文 王晋国 侯兆阳 张力东 高当丽

引用本文:
Citation:

基质材料对Yb3+浓度调控的上转换荧光红绿比的影响

张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽

Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio

Zhang Xiang-Yu, Wang Dan, Shi Huan-Wen, Wang Jin-Guo, Hou Zhao-Yang, Zhang Li-Dong, Gao Dang-Li
PDF
导出引用
  • 控制Yb3+掺杂浓度是一种重要的调控红绿荧光比率的方法.然而,关于不同基质中Yb3+浓度对红绿上转换荧光调控的敏感度仍缺少定量的对比研究,而且调控机理尚不清晰.本文通过乙二胺四乙酸辅助的水热法,合成了形貌可控的NaYF4微米棒、LiYF4微米八面体和YF3微米砖三种氟化物晶体.通过激光共聚焦显微镜系统对比研究了Yb3+/Er3+掺杂的三种不同基质和形貌的单颗粒氟化物微米晶体的上转换荧光行为和红绿比率对Yb3+变化的敏感度.研究结果表明:NaYF4:Er3+微米棒的红绿比率对Yb3+的掺杂浓度响应最为敏感,各种Yb3+浓度掺杂的LiYF4:Er3+微米八面体上转换荧光被绿光主控,而不同Yb3+掺杂的YF3:Er3+微米砖表现出了稳定的黄光发射.通过分析荧光发射谱和比较上下转换荧光动力学过程结合荧光强度-功率依赖关系,基于拥有不同声子能量的基质辅助的Er3+离子中间态的不同消布居途径,揭示了不同基质中红绿比率对Yb3+变化响应的物理机制,并提供了一种研究上转换机理的思路.
    Rare earth doped upconverting micro/nanoparticles with controlled size and structure,which are excited by near-infrared light and emit the visible light,possess many applications especially in the areas of biomedicine and photonics devices.There is no universally favored spectral profile in a variety of specific applications.We expect upconversion (UC) nanoparticles with the tunable spectral behavior to meet the demand for actual applications.Although the UC emission wavelengths are strictly limited by the electronic structure of the dopant,the spectral profile could be varied by many factors such as the structure,size,and crystallization. Varying matrix host is the most convenient approach to dynamically tuning UC that is essential for a variety of studies.However,this approach suffers a significant constraint due to insensitive response of most dopant luminescence centers to matrix host.In this paper,a facile EDTA-assisted hydrothermal approach is developed to the shape-selective synthesis of fluoride microcrystals including NaYF4 rods,LiYF4 octahedrons,and YF3 cuboid brick,by only tuning the pH of the mother liquid.The UC spectra of a series of Yb3+/Er3+-doped fluoride particles with the different shapes and phases are investigated in detail under a near-infrared co-focused laser excitation.The effects of matrix hosts on UC luminescence attributed to the 4f-4f transitions of the Er3+ ions in a single particle are amplified through elevating Yb3+ concentration.The associated tuning mechanisms are explored by using the power dependent UC luminescence and the temporal evolutions of up/down-conversion emission spectra. Mechanistic investigation reveals that the sensitive response of Er3+ UC emission to matrix host stems from maximal use of the various channels populated luminescence levels.It is well known that the population and depopulation of the luminescence levels strongly depend on the excitation power density,the energy level structure of electron,the ratio of the population ions between the two levels,maximum phonon energy and phonon density.The matrix plays the most important role in both the population and depopulation of the luminescence levels mediated by modifying the radiation relaxation probability and non-radiation relaxation probability via varying lattice symmetry and phonon energy.However,the fine modification of the matrix by doping is not always effective to luminescence tuning.In the current study,comparing with LiYF4 and YF3 matrixes,it is interestingly found that NaYF4 matrix can effectively tune the intensity ratio of red to green luminescence from 0.48 to 6.11 by varying Yb3+ concentration from 0 to 98% particle.The result indicates that the multiple aspects in the UC process could be influenced by Yb3+ doping NaYF4 matrix structure.We believe that Yb3+/Er3+ codoped NaYF4 matrixes with various Yb3+ concentrations will result in applications in displays,biological imaging,chemical sensing and anticounterfeiting.
      通信作者: 张翔宇, xyzhang@chd.edu.cn;gaodangli@163.com ; 高当丽, xyzhang@chd.edu.cn;gaodangli@163.com
    • 基金项目: 国家自然科学基金(批准号:11604253,51771033)、陕西省青年科技新星项目(批准号:2015KJXX-33)、陕西省自然科学基金(批准号:2016JM5055)、中央高校基本科研业务费(批准号:310812171004,301812172001)、2017年省级大学生创新创业训练计划(批准号:1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn;gaodangli@163.com ; Gao Dang-Li, xyzhang@chd.edu.cn;gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51771033), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JM5055), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 301812172001), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [2]

    Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579

    [3]

    Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323

    [4]

    Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126

    [5]

    Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161

    [6]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237

    [7]

    Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416

    [8]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [9]

    Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343

    [10]

    Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259

    [11]

    Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [12]

    Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052

    [13]

    Auzel F 2004 Chem. Rev. 104 139

    [14]

    Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305

    [15]

    Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945

    [16]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 65 204205]

    [17]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [18]

    Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528

    [19]

    Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694

    [20]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [21]

    Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212

    [22]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [23]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [24]

    Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453

    [25]

    Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165

    [26]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [27]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [28]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [29]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622

    [31]

    Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821

    [32]

    Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020

  • [1]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [2]

    Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579

    [3]

    Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323

    [4]

    Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126

    [5]

    Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161

    [6]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237

    [7]

    Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416

    [8]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [9]

    Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343

    [10]

    Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259

    [11]

    Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [12]

    Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052

    [13]

    Auzel F 2004 Chem. Rev. 104 139

    [14]

    Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305

    [15]

    Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945

    [16]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 65 204205]

    [17]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [18]

    Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528

    [19]

    Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694

    [20]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [21]

    Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212

    [22]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [23]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [24]

    Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453

    [25]

    Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165

    [26]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [27]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [28]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [29]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622

    [31]

    Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821

    [32]

    Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020

  • [1] 熊家骋, 黄哲群, 张恒, 王启祥, 崔可航. 热光伏器件中的光谱调控.  , 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [2] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控.  , 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [3] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控.  , 2021, (): . doi: 10.7498/aps.70.20211438
    [4] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射.  , 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [5] 张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽. NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性.  , 2016, 65(20): 204205. doi: 10.7498/aps.65.204205
    [6] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控.  , 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [7] 孙彧, 杨春晖, 姜兆华, 孟祥彬. LiNbO3和LiTaO3晶体Er3+/Yb3+掺杂水热外延层室温吸收光谱分析.  , 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [8] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性.  , 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [9] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能.  , 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [10] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光.  , 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [11] 黄同德, 姜本学, 吴玉松, 李江, 石云, 刘文斌, 潘裕柏, 黄利萍, 郭景坤. Yb3+,Er3+:YAG透明陶瓷的制备和1.5 μm波段光谱性能研究.  , 2009, 58(2): 1298-1304. doi: 10.7498/aps.58.1298
    [12] 肖思国, 阳效良, 丁建文. Er3+,Er3+/Yb3+掺杂氟化镧超微材料的光谱特性与上转换发光.  , 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [13] 贾相华, 吕树臣. Er3+及Er3+/Yb3+共掺铋酸盐玻璃光谱性质研究.  , 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971
    [14] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究.  , 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [15] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析.  , 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [16] 李 涛, 张勤远, 姜中宏. Ce3+对Er3+/Yb3+共掺氟磷酸盐玻璃光谱性质的影响.  , 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [17] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究.  , 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [18] 张丽艳, 温 磊, 徐永春, 胡丽丽. Yb3+掺杂铝氟磷酸盐玻璃的光谱和激光性能.  , 2004, 53(5): 1567-1571. doi: 10.7498/aps.53.1567
    [19] 戴世勋, 杨建虎, 戴能利, 徐时清, 温 磊, 胡丽丽, 姜中宏. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响.  , 2003, 52(6): 1533-1539. doi: 10.7498/aps.52.1533
    [20] 张龙, 林凤英, 胡和方. Yb3+掺杂四磷酸盐玻璃光谱研究.  , 2001, 50(7): 1378-1384. doi: 10.7498/aps.50.1378
计量
  • 文章访问数:  6392
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-25
  • 修回日期:  2018-01-01
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map