搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究

丁发柱 张京业 谭运飞 陈治友 董泽斌 张慧亮 商红静 许文娟 张贺 屈飞 高召顺 周微微 古宏伟

引用本文:
Citation:

国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究

丁发柱, 张京业, 谭运飞, 陈治友, 董泽斌, 张慧亮, 商红静, 许文娟, 张贺, 屈飞, 高召顺, 周微微, 古宏伟

Development of a 4 T (46 K) 100 mm high-temperature superconducting coil made of homemade MOCVD-YBCO coated conductors

Ding Fa-Zhu, Zhang Jing-Ye, Tan Yun-Fei, Chen Zhi-You, Dong Ze-Bin, Zhang Hui-Liang, Shang Hong-Jing, Xu Wen-Juan, Zhang He, Qu Fei, Gao Zhao-Shun, Zhou Wei-Wei, Gu Hong-Wei
PDF
导出引用
  • 超导磁体的场强与超导材料的载流能力、磁体口径和低温环境有密切关系.为了在中高温区域实现高磁场强度的超导磁体,采用国产第二代高温超导带材,成功绕制出内直径为100 mm的高温超导线圈.该超导线圈在77,65,55和46 K不同温区下进行了性能测试,其最大运行电流分别为65,147,257和338 A,对应的中心磁场强度分别为0.78,1.77,3.1和4.08 T.所研制的超导线圈的中平面上磁场基本一致.
    The second-generation high-temperature superconductor (2G HTS) is a good candidate for high field magnet due to its high critical temperature Tc,high critical current density Jc,and high irreversibility field Hirr.This paper presents the design and development of a 4.08 T (46 K) coil made of homemade 2G HTS.In order to meet the design requirement of HTS coil,the electromagnetic finite element modeling and optimization are carried out on the basis of the research of the properties of YBa2Cu3O7-x(YBCO) tapes.And the design scheme of HTS coil is completed.Then the HTS coil with an inner diameter of 100 mm is successfully constructed according to the scheme.It consists of a stack of 10 double-pancakes with the same outer diameter wound with YBCO tapes.The diameter and height of the HTS coil are 236 and 359 mm,respectively.A total of 1600 meters of YBCO tape are used to wind this HTS coil.We measure the I-V curves of superconducting coil at different cryogenic temperatures.First,liquid nitrogen is used to cool the HTS coil to 77 K,and then the temperature is reduced to 65 K by the decompression cooling method.The cooling coil containing liquid helium is used to exchange heat and cool the solid nitrogen to obtain much lower cryogenic temperature.The maximum operating currents of the HTS magnet at 77,65,and 55 K are 65,147,and 257 A,respectively,corresponding to the center magnetic field of 0.78,1.77,and 3.1 T.At 46 K,the HTS coil with an inner diameter of 100 mm generates a 4.08 T field at the center.And the magnetic field of superconducting coil is basically uniform in the medium plane.The results demonstrate a strong potential of home-made YBCO magnet for direct current high-field applications.
      通信作者: 古宏伟, guhw@mail.iee.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2014AA032702)、国家自然科学基金(批准号:51577180,51577181)、北京市自然科学基金委面上项目(批准号:2152035)和中国科学院青年创新促进会(批准号:2016128)资助的课题.
      Corresponding author: Gu Hong-Wei, guhw@mail.iee.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032702), the National Nature Science Foundation of China (Grant Nos. 51577180, 51577181), the Beijing Natural Science Foundation, China (Grant No. 2152035), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016128).
    [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing:Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京:科学出版社)第118–128页]

    [2]

    Xu A, Delgado L, Khatri N, Liu Y, Selvamanickam V, Abraimov D, Jaroszynski J, Kametani F, Larbalestier D C 2014 APL Mater. 2 046111

    [3]

    Xu A, Jaroszynski J, Kametani F, Larbalestier D 2015 Appl. Phys. Lett. 106 052603

    [4]

    Rizzo F, Augieri A, Angrisani Armenio A, Galluzzi V, Mancini A, Pinto V, Rufoloni A, Vannozzi A, Bianchetti M, Kursumovic A, MacManus-Driscoll J L, Meledin A, van Tendeloo G, Celentano1 G 2016 APL Mater. 4 061101

    [5]

    Selvamanickam V, Kesgin I, Guevara A, Shi T, Yao Y, Zhang Yao, Zhang Y X, Majkic G 2010 Progress in Research and Development of IBAD-MOCVD Based Superconducting Wires (Washington D.C.:Applied Superconductivity Conference)

    [6]

    Moon S H 2013 SuNAM Developed New Process Named RCE-DR:the Practical Highest Throughput Process (Genova:European Conference on Applied Superconductivity)

    [7]

    Iijima Y, Adachi Y, Igarashi M, Kakimoto K, Fujita S, Daibo M, Ohsugi M, Takemoto T, Nakamura N, Kurihara C, Machida K, Hanyu S, Kikutake R, Nagata M, Tatano F, Itoh M 2014 Development for Mass Production of Homogeneous RE123 Coated Conductors by Hot-wall PLD Process on IBAD Template Technique (Charlotte:Applied Superconductivity Conference)

    [8]

    Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867

    [9]

    MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439

    [10]

    Gutiérrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, Pomar A, Sanditmenge F, Mestres N, Puig T, Obradors X 2007 Nat. Mater. 6 367

    [11]

    Coll M, Ye S, Rouco V, Palau A, Guzman R, Gazquez J, Arbiol J, Suo H, Puig T, Obradors X 2013 Supercond. Sci. Technol. 26 015001

    [12]

    Selvamanickam V, Xu A, Liu Y, Khatri N D, Lei C, Chen Y, Galstyan E, Majkic G 2014 Supercond. Sci. Technol. 27 055010

    [13]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T, Peng X Y, Cao J L 2014 Appl. Surf. Sci. 314 622

    [14]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240

    [15]

    Weijers H W, Markiewicz W D, Voran A J, Gundlach S R, Sheppard W R, Jarvis B, Johnson Z L, Noyes P D, Lu J, Kandel H, Bai H, Gavrilin A V, Viouchkov Y L, Larbalestier D C, Abraimov D V 2014 IEEE Trans. Appl. Supercond. 24 4301805

    [16]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE. Trans. Appl. Supercond. 25 4301205

    [17]

    Fujita S, Satoh H, Daibo M, Iijima Y, Itoh M, Oguro H, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 8400304

    [18]

    Gagnon B, Hahn S, Park D K, Voccio J, Kim K, Bascuña J, Iwasa Y 2013 Physica C 486 26

    [19]

    Kim S B, Kimoto T, Hahn S, Iwasa Y, Voccio J, Tomita M 2013 Physica C 484 295

    [20]

    Kesgin I, Kasa M, Ivanyushenkov Y, Welp U 2017 Supercond. Sci. Technol. 30 04LT01

    [21]

    Yoon S, Kim J, Cheon K, Lee H, Hahn S, Moon S H 2016 Supercond. Sci. Technol. 29 04LT04

    [22]

    Zhu G, Liu J H, Cheng J S, Feng Z K, Dai Y M, Wang Q L 2016 Acta Phys. Sin. 65 058401 (in Chinese) [朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良 2016 65 058401]

  • [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing:Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京:科学出版社)第118–128页]

    [2]

    Xu A, Delgado L, Khatri N, Liu Y, Selvamanickam V, Abraimov D, Jaroszynski J, Kametani F, Larbalestier D C 2014 APL Mater. 2 046111

    [3]

    Xu A, Jaroszynski J, Kametani F, Larbalestier D 2015 Appl. Phys. Lett. 106 052603

    [4]

    Rizzo F, Augieri A, Angrisani Armenio A, Galluzzi V, Mancini A, Pinto V, Rufoloni A, Vannozzi A, Bianchetti M, Kursumovic A, MacManus-Driscoll J L, Meledin A, van Tendeloo G, Celentano1 G 2016 APL Mater. 4 061101

    [5]

    Selvamanickam V, Kesgin I, Guevara A, Shi T, Yao Y, Zhang Yao, Zhang Y X, Majkic G 2010 Progress in Research and Development of IBAD-MOCVD Based Superconducting Wires (Washington D.C.:Applied Superconductivity Conference)

    [6]

    Moon S H 2013 SuNAM Developed New Process Named RCE-DR:the Practical Highest Throughput Process (Genova:European Conference on Applied Superconductivity)

    [7]

    Iijima Y, Adachi Y, Igarashi M, Kakimoto K, Fujita S, Daibo M, Ohsugi M, Takemoto T, Nakamura N, Kurihara C, Machida K, Hanyu S, Kikutake R, Nagata M, Tatano F, Itoh M 2014 Development for Mass Production of Homogeneous RE123 Coated Conductors by Hot-wall PLD Process on IBAD Template Technique (Charlotte:Applied Superconductivity Conference)

    [8]

    Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867

    [9]

    MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439

    [10]

    Gutiérrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, Pomar A, Sanditmenge F, Mestres N, Puig T, Obradors X 2007 Nat. Mater. 6 367

    [11]

    Coll M, Ye S, Rouco V, Palau A, Guzman R, Gazquez J, Arbiol J, Suo H, Puig T, Obradors X 2013 Supercond. Sci. Technol. 26 015001

    [12]

    Selvamanickam V, Xu A, Liu Y, Khatri N D, Lei C, Chen Y, Galstyan E, Majkic G 2014 Supercond. Sci. Technol. 27 055010

    [13]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T, Peng X Y, Cao J L 2014 Appl. Surf. Sci. 314 622

    [14]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240

    [15]

    Weijers H W, Markiewicz W D, Voran A J, Gundlach S R, Sheppard W R, Jarvis B, Johnson Z L, Noyes P D, Lu J, Kandel H, Bai H, Gavrilin A V, Viouchkov Y L, Larbalestier D C, Abraimov D V 2014 IEEE Trans. Appl. Supercond. 24 4301805

    [16]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE. Trans. Appl. Supercond. 25 4301205

    [17]

    Fujita S, Satoh H, Daibo M, Iijima Y, Itoh M, Oguro H, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 8400304

    [18]

    Gagnon B, Hahn S, Park D K, Voccio J, Kim K, Bascuña J, Iwasa Y 2013 Physica C 486 26

    [19]

    Kim S B, Kimoto T, Hahn S, Iwasa Y, Voccio J, Tomita M 2013 Physica C 484 295

    [20]

    Kesgin I, Kasa M, Ivanyushenkov Y, Welp U 2017 Supercond. Sci. Technol. 30 04LT01

    [21]

    Yoon S, Kim J, Cheon K, Lee H, Hahn S, Moon S H 2016 Supercond. Sci. Technol. 29 04LT04

    [22]

    Zhu G, Liu J H, Cheng J S, Feng Z K, Dai Y M, Wang Q L 2016 Acta Phys. Sin. 65 058401 (in Chinese) [朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良 2016 65 058401]

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响.  , 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究.  , 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [3] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一.  , 2021, 70(1): 018401. doi: 10.7498/aps.70.20202042
    [4] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响.  , 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [5] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试.  , 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [6] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析.  , 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [7] 于红云. 超导磁体剩余磁场对软磁材料测试的影响.  , 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [8] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响.  , 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [9] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法.  , 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [10] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [11] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计.  , 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [12] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究.  , 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [13] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响.  , 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [14] 陶振兰, D.E. AlBURGER, K.W. JONES, Y.D. YAO, Y.H. KAO. 利用氘粒子活化分析测定高温超导体中的氧含量.  , 1993, 42(2): 326-330. doi: 10.7498/aps.42.326
    [15] 李文铸, 吴建斌, 陈锋, 程开甲. 准二维玻色凝聚、氧空位、高温超导.  , 1989, 38(7): 1199-1204. doi: 10.7498/aps.38.1199
    [16] 杜家驹, 姜建义, 王翔, 尹华清. 单相钇钡铜氧高温超导体的超导转变与内耗原位研究.  , 1988, 37(9): 1556-1559. doi: 10.7498/aps.37.1556
    [17] 超导材料组. 多股Nb3Sn超导小磁体的研制.  , 1976, 25(3): 268-269. doi: 10.7498/aps.25.268
    [18] 锰锌铁氧体单晶小组. 高温氧压单晶炉.  , 1976, 25(2): 178-178. doi: 10.7498/aps.25.178
    [19] 超导材料组. 较低温扩散法Nb3Sn带绕制成十万高斯超导磁体.  , 1975, 24(6): 452-453. doi: 10.7498/aps.24.452
    [20] 吴杭生. 铁磁体的超导电理论.  , 1963, 19(2): 103-115. doi: 10.7498/aps.19.103
计量
  • 文章访问数:  7428
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2018-01-04
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map