-
利用基于纳米粒子的平面激光散射技术获取超声速(Ma=3.0)湍流边界层的密度分布,采用光线追迹方法计算其对应的光程差分布,并结合边界层气动光学相似律验证实验结果的可靠性.着重研究了光线入射角度对超声速湍流边界层气动光学效应的影响,并对其内在机理进行了分析.研究表明,气动光学效应对光线入射角度的依赖性源于光线在流场中的传输路径,传输路径的不同导致了光线在流场中的传输距离以及对应密度脉动互相关结果的差异.光线倾斜入射导致其在流场中传输距离增长,进而气动光学效应出现恶化.光线入射方向与壁面垂直方向之间的夹角越大,气动光学效应越显著,而且不同时刻的差异性增加,气动光学效应校正的难度增加.超声速湍流边界层中大量具有特定方向的涡结构导致了湍流边界层气动光学效应的各向异性.当光线倾斜向下游入射时,光线传播方向与流场中的涡结构具有较好的一致性,体现为此方向上密度脉动互相关系数较大,故气动光学效应比较严重.而当光线倾斜向上游入射时,相关系数较小,故气动光学效应较弱.The aero-optical distortion caused by the compressibility of high-speed flow field has a great influence on the development of airborne optical detection system of (hypersonic) supersonic vehicles. The turbulent boundary layer is one of the most important aspects in the aero-optical study, and has become one of the hot research points in the field of aero-optical study. The nano-particle-based planar laser scattering technique is used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layers, and the optical path difference, which is quite crucial for the aero-optical study, is obtained by ray-tracing method. The experimental result is verified by being compared with the theoretical result computed by the aero-optical scaling method of turbulent boundary layers. Five different light incident angles (α=60°, 75°, 90°, 105°, 120°) are selected and used to examine the influences of light incident angles on the supersonic turbulent layer, and the underlying flow physics is analyzed. Research shows that the light propagation path in the supersonic turbulent boundary layer contributes to the light incident angle dependence of aero-optics. The different propagation paths lead to the difference between the light propagation distance in the flow field and the correlation results of the corresponding density fluctuation. The oblique incidence of light results in the increase of the propagation distance in the flow field, and then the aero-optics turns worse. The greater the angle between the incident direction of light and the vertical direction of the wall, the more significant the aero-optics is, the difference increases at different times, the difficulty in correcting the aero-optics is also increased. In the supersonic turbulent boundary layer, a large number of vortices with a specific orientation lead to the anisotropy of the aero-optics in the turbulent boundary layer. By calculating the spatial two-point correlation of the density fluctuations at the streamwise plane (x-y plane), the cross-correlation result of density fluctuations at any light incidence angle (α=0°-180°) can be obtained. The local coherent structure scale is nearly 0.20 mm, which is basically consistent with the aero-optical effective scale (≈ 0.18 mm) computed from the formula proposed by Mani et al. When the light is inclined downstream, the direction of light propagation is consistent with the vortex structure in the flow field, and in this direction, the correlation coefficient of density fluctuation is larger, so the aero-optics is more serious. When the light beam is tilted upstream, the correlation coefficient is smaller, so the aero-optics is weaker.
-
Keywords:
- aero-optics /
- supersonic turbulent boundary layer /
- two-point spatial correlation /
- ray-tracing method
[1] Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 4741
[2] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]
[3] Ding H L, Yi S H, Fu J, Wu Y Y, Zhang F, Zhao X H 2017 Infrared and Laser Engineering 46 0211002 (in Chinese) [丁浩林, 易仕和, 付佳, 吴宇阳, 张锋, 赵鑫海 2017 红外与激光工程 46 0211002]
[4] Liepman H W 1952 Tech. Rep. SM-14397
[5] Tromeur E, Garnier E, Sagaut P, Basdevant C 2003 J. Turbul. 4 1
[6] Tromeur E, Garnier E, Sagaut P, Basdevant C 2006 J. Turbul. 7 1
[7] Wang K, Wang M 2012 J. Fluid Mech. 696 122
[8] Wyckham C M, Smits A 2009 AIAA J. 47 2158
[9] Gordeyev S, Smith A E, Cress J A, Jumper E J 2014 J. Fluid Mech. 740 214
[10] Jumper E J, Gordeyev S 2017 Annu. Rev. Fluid Mech. 49 419
[11] Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545
[12] Tian L F, Yi S H, ZhaoY X, He L, Cheng Z Y 2009 Sci. Chin. Phys. Mech. Astron. 52 1357
[13] He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701 (in Chinese) [何霖, 易仕和, 陆小革 2017 66 024701]
[14] Gao Q, Yi S H, Jiang Z F, He L, Zhao Y X 2012 Opt. Express 20 16494
[15] Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701
[16] Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 7604
[17] Jones M I, Bender E E 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11-14, 2001 p1
[18] Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392
[19] Smith K M, Dutton J C 2001 Phys. Fluids 13 2076
[20] Mani A, Wang M, Moin P 2008 J. Comput. Phys. 227 9008
-
[1] Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 4741
[2] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]
[3] Ding H L, Yi S H, Fu J, Wu Y Y, Zhang F, Zhao X H 2017 Infrared and Laser Engineering 46 0211002 (in Chinese) [丁浩林, 易仕和, 付佳, 吴宇阳, 张锋, 赵鑫海 2017 红外与激光工程 46 0211002]
[4] Liepman H W 1952 Tech. Rep. SM-14397
[5] Tromeur E, Garnier E, Sagaut P, Basdevant C 2003 J. Turbul. 4 1
[6] Tromeur E, Garnier E, Sagaut P, Basdevant C 2006 J. Turbul. 7 1
[7] Wang K, Wang M 2012 J. Fluid Mech. 696 122
[8] Wyckham C M, Smits A 2009 AIAA J. 47 2158
[9] Gordeyev S, Smith A E, Cress J A, Jumper E J 2014 J. Fluid Mech. 740 214
[10] Jumper E J, Gordeyev S 2017 Annu. Rev. Fluid Mech. 49 419
[11] Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545
[12] Tian L F, Yi S H, ZhaoY X, He L, Cheng Z Y 2009 Sci. Chin. Phys. Mech. Astron. 52 1357
[13] He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701 (in Chinese) [何霖, 易仕和, 陆小革 2017 66 024701]
[14] Gao Q, Yi S H, Jiang Z F, He L, Zhao Y X 2012 Opt. Express 20 16494
[15] Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701
[16] Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 7604
[17] Jones M I, Bender E E 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11-14, 2001 p1
[18] Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392
[19] Smith K M, Dutton J C 2001 Phys. Fluids 13 2076
[20] Mani A, Wang M, Moin P 2008 J. Comput. Phys. 227 9008
计量
- 文章访问数: 6187
- PDF下载量: 267
- 被引次数: 0