搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同光线入射角度下超声速湍流边界层气动光学效应的实验研究

丁浩林 易仕和 朱杨柱 赵鑫海 何霖

引用本文:
Citation:

不同光线入射角度下超声速湍流边界层气动光学效应的实验研究

丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖

Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles

Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin
PDF
导出引用
  • 利用基于纳米粒子的平面激光散射技术获取超声速(Ma=3.0)湍流边界层的密度分布,采用光线追迹方法计算其对应的光程差分布,并结合边界层气动光学相似律验证实验结果的可靠性.着重研究了光线入射角度对超声速湍流边界层气动光学效应的影响,并对其内在机理进行了分析.研究表明,气动光学效应对光线入射角度的依赖性源于光线在流场中的传输路径,传输路径的不同导致了光线在流场中的传输距离以及对应密度脉动互相关结果的差异.光线倾斜入射导致其在流场中传输距离增长,进而气动光学效应出现恶化.光线入射方向与壁面垂直方向之间的夹角越大,气动光学效应越显著,而且不同时刻的差异性增加,气动光学效应校正的难度增加.超声速湍流边界层中大量具有特定方向的涡结构导致了湍流边界层气动光学效应的各向异性.当光线倾斜向下游入射时,光线传播方向与流场中的涡结构具有较好的一致性,体现为此方向上密度脉动互相关系数较大,故气动光学效应比较严重.而当光线倾斜向上游入射时,相关系数较小,故气动光学效应较弱.
    The aero-optical distortion caused by the compressibility of high-speed flow field has a great influence on the development of airborne optical detection system of (hypersonic) supersonic vehicles. The turbulent boundary layer is one of the most important aspects in the aero-optical study, and has become one of the hot research points in the field of aero-optical study. The nano-particle-based planar laser scattering technique is used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layers, and the optical path difference, which is quite crucial for the aero-optical study, is obtained by ray-tracing method. The experimental result is verified by being compared with the theoretical result computed by the aero-optical scaling method of turbulent boundary layers. Five different light incident angles (α=60°, 75°, 90°, 105°, 120°) are selected and used to examine the influences of light incident angles on the supersonic turbulent layer, and the underlying flow physics is analyzed. Research shows that the light propagation path in the supersonic turbulent boundary layer contributes to the light incident angle dependence of aero-optics. The different propagation paths lead to the difference between the light propagation distance in the flow field and the correlation results of the corresponding density fluctuation. The oblique incidence of light results in the increase of the propagation distance in the flow field, and then the aero-optics turns worse. The greater the angle between the incident direction of light and the vertical direction of the wall, the more significant the aero-optics is, the difference increases at different times, the difficulty in correcting the aero-optics is also increased. In the supersonic turbulent boundary layer, a large number of vortices with a specific orientation lead to the anisotropy of the aero-optics in the turbulent boundary layer. By calculating the spatial two-point correlation of the density fluctuations at the streamwise plane (x-y plane), the cross-correlation result of density fluctuations at any light incidence angle (α=0°-180°) can be obtained. The local coherent structure scale is nearly 0.20 mm, which is basically consistent with the aero-optical effective scale (≈ 0.18 mm) computed from the formula proposed by Mani et al. When the light is inclined downstream, the direction of light propagation is consistent with the vortex structure in the flow field, and in this direction, the correlation coefficient of density fluctuation is larger, so the aero-optics is more serious. When the light beam is tilted upstream, the correlation coefficient is smaller, so the aero-optics is weaker.
      通信作者: 丁浩林, dinghaolin10@nudt.edu.cn
    • 基金项目: 国家重大科研仪器研制项目(批准号:11527802)和国家自然科学基金(批准号:11172326,11302256)资助的课题.
      Corresponding author: Ding Hao-Lin, dinghaolin10@nudt.edu.cn
    • Funds: Project supported by the National Project for Research and Development of Major Scientific Instruments (Grant No. 11527802) and the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256).
    [1]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 4741

    [2]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [3]

    Ding H L, Yi S H, Fu J, Wu Y Y, Zhang F, Zhao X H 2017 Infrared and Laser Engineering 46 0211002 (in Chinese) [丁浩林, 易仕和, 付佳, 吴宇阳, 张锋, 赵鑫海 2017 红外与激光工程 46 0211002]

    [4]

    Liepman H W 1952 Tech. Rep. SM-14397

    [5]

    Tromeur E, Garnier E, Sagaut P, Basdevant C 2003 J. Turbul. 4 1

    [6]

    Tromeur E, Garnier E, Sagaut P, Basdevant C 2006 J. Turbul. 7 1

    [7]

    Wang K, Wang M 2012 J. Fluid Mech. 696 122

    [8]

    Wyckham C M, Smits A 2009 AIAA J. 47 2158

    [9]

    Gordeyev S, Smith A E, Cress J A, Jumper E J 2014 J. Fluid Mech. 740 214

    [10]

    Jumper E J, Gordeyev S 2017 Annu. Rev. Fluid Mech. 49 419

    [11]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [12]

    Tian L F, Yi S H, ZhaoY X, He L, Cheng Z Y 2009 Sci. Chin. Phys. Mech. Astron. 52 1357

    [13]

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701 (in Chinese) [何霖, 易仕和, 陆小革 2017 66 024701]

    [14]

    Gao Q, Yi S H, Jiang Z F, He L, Zhao Y X 2012 Opt. Express 20 16494

    [15]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [16]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 7604

    [17]

    Jones M I, Bender E E 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11-14, 2001 p1

    [18]

    Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392

    [19]

    Smith K M, Dutton J C 2001 Phys. Fluids 13 2076

    [20]

    Mani A, Wang M, Moin P 2008 J. Comput. Phys. 227 9008

  • [1]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 4741

    [2]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 084219]

    [3]

    Ding H L, Yi S H, Fu J, Wu Y Y, Zhang F, Zhao X H 2017 Infrared and Laser Engineering 46 0211002 (in Chinese) [丁浩林, 易仕和, 付佳, 吴宇阳, 张锋, 赵鑫海 2017 红外与激光工程 46 0211002]

    [4]

    Liepman H W 1952 Tech. Rep. SM-14397

    [5]

    Tromeur E, Garnier E, Sagaut P, Basdevant C 2003 J. Turbul. 4 1

    [6]

    Tromeur E, Garnier E, Sagaut P, Basdevant C 2006 J. Turbul. 7 1

    [7]

    Wang K, Wang M 2012 J. Fluid Mech. 696 122

    [8]

    Wyckham C M, Smits A 2009 AIAA J. 47 2158

    [9]

    Gordeyev S, Smith A E, Cress J A, Jumper E J 2014 J. Fluid Mech. 740 214

    [10]

    Jumper E J, Gordeyev S 2017 Annu. Rev. Fluid Mech. 49 419

    [11]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [12]

    Tian L F, Yi S H, ZhaoY X, He L, Cheng Z Y 2009 Sci. Chin. Phys. Mech. Astron. 52 1357

    [13]

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701 (in Chinese) [何霖, 易仕和, 陆小革 2017 66 024701]

    [14]

    Gao Q, Yi S H, Jiang Z F, He L, Zhao Y X 2012 Opt. Express 20 16494

    [15]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [16]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 7604

    [17]

    Jones M I, Bender E E 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11-14, 2001 p1

    [18]

    Hugo R J, Jumper E J 2000 Appl. Opt. 39 4392

    [19]

    Smith K M, Dutton J C 2001 Phys. Fluids 13 2076

    [20]

    Mani A, Wang M, Moin P 2008 J. Comput. Phys. 227 9008

  • [1] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究.  , 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [2] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法.  , 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [4] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析.  , 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [5] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法.  , 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [6] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响.  , 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [7] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究.  , 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [8] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究.  , 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [9] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究.  , 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [10] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [11] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力.  , 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [12] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性.  , 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [13] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正.  , 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [14] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究.  , 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [15] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究.  , 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [16] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [17] 岑兆丰, 李晓彤. 热应力双折射介质中的光传输研究.  , 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [18] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像.  , 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [19] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算.  , 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [20] 邵 丹, 邵 亮, 邵常贵, 陈贻汉. 量子引力的曲率两点真空相关.  , 2004, 53(2): 367-372. doi: 10.7498/aps.53.367
计量
  • 文章访问数:  6186
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 修回日期:  2017-08-22
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map