搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机

赵丽梅 张国锋

引用本文:
Citation:

带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机

赵丽梅, 张国锋

Entangled quantum Otto and quantum Stirling heat engine based on two-spin systems with Dzyaloshinski-Moriya interaction

Zhao Li-Mei, Zhang Guo-Feng
PDF
导出引用
  • 研究了以带有Dzyaloshinski-Mariya(DM)相互作用的两比特自旋体系为工质的量子纠缠Otto热机和量子Stirling热机.两种不同热机在各自的循环过程中,通过保持其他参量不变,只有DM相互作用发生改变,从而分析热机循环中DM相互作用与热传递、做功以及效率等热力学量之间的关系.研究结果表明:DM相互作用对两种热机的基本量子热力学量都具有重要的影响,但量子Stirling热机由于回热器的使用,其循环效率会大于量子Otto纠缠热机的效率,甚至会超过Carnot效率;得到了量子Otto纠缠热机和量子Stirling热机做正功的条件.因此,在这两个纠缠体系中,热力学第二定律都依然成立.
    Recently, the influences of the Dzyaloshinski-Moriya (DM) interaction on the performances of the basic thermo-dynamical quantities have attracted a lot of attention. A large number of investigations on the quantum coupling systems with DM interaction have been carried out. However, the specific effects of spin-orbit coupling with the performance on the quantum heat engine have not been taken into account in previous studies. DM interaction is a special kind spin-orbit coupling. To enrich the research of the quantum heat engines, the investigation about the effect of DM interaction on its thermodynamic characteristics should be included. In this study, we construct two entangled quantum engines based on spin-1/2 systems with different DM interactions, with the spin exchange constant and magnetic field fixed. The quantum Otto engine and the quantum Stirling engine are discussed in this article. By numerical calculation, we obtain the expressions for several thermodynamic quantities and plot the isoline maps of the variation of the basic thermodynamic quantities such as heat transfer, work with D1 and D2 and their efficiency in the two engines. The results indicate that the DM interaction plays an important role in the thermodynamic quantities for the quantum Otto engine and the quantum Stirling engine. In addition, the positive work condition is discussed with different DM interactions, with the spin exchange constant and magnetic field. Furthermore fixed, it is found that the efficiency of quantum Otto engine cycle is smaller than the Carnot efficiency while the quantum Stirling cycle can exceed the Carnot efficiency by using the regenerator. Finally, the second law of thermodynamics is shown to be valid in the two entangled quantum systems.
      通信作者: 张国锋, gf1978zhang@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574022)资助的课题.
      Corresponding author: Zhang Guo-Feng, gf1978zhang@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574022).
    [1]

    Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343

    [3]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [4]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [5]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [6]

    Wang X G 2001 Phys. Rev. A 64 012313

    [7]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135

    [8]

    Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144

    [9]

    Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004

    [10]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [11]

    Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110

    [12]

    Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101

    [13]

    Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102

    [14]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [15]

    Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102

    [16]

    Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166

    [17]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [18]

    Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4

    [19]

    Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [20]

    Ivanchenko E A 2015 Phys. Rev. E 92 032124

    [21]

    Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142

    [22]

    He X, He J, Zheng J 2012 Physica A 391 6594

    [23]

    Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197

    [24]

    Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113

    [25]

    Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401

    [26]

    Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018

    [27]

    Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021

    [28]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003

    [29]

    Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306

    [30]

    Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602

    [31]

    Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.

    [32]

    Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119

    [33]

    Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001

    [34]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [35]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [36]

    Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [39]

    Zhang G F 2008 Eur. Phys. J. D 49 123

    [40]

    Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229

    [41]

    Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135

    [42]

    RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325

    [43]

    Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086

    [44]

    Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32

  • [1]

    Scovil H E D, Schulz-Dubois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geusic J E, Schulz-Dubois E O, Scovil H E D 1967 Phys. Rev. 156 343

    [3]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [4]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [5]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [6]

    Wang X G 2001 Phys. Rev. A 64 012313

    [7]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135

    [8]

    Huang X L, Wang L C, Yi X X 2013 Phys. Rev. E 87 012144

    [9]

    Zhou Y, Zhang G F, Li S S 2009 Europhys. Lett. 86 50004

    [10]

    Zhang G F 2007 Phys. Rev. A 75 034304

    [11]

    Feldmann T, Kosloff R 2004 Phys. Rev. E 70 046110

    [12]

    Feldmann T, Kosloff R 2003 Phys. Rev. E 68 016101

    [13]

    Kosloff R, Feldmann T 2002 Phys. Rev. E 65 055102

    [14]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [15]

    Zhang T, Liu W T, Chen P X, Li Z 2007 Phys. Rev. A 75 062102

    [16]

    Thomas G, Johal R S 2014 Eur. Phys. J. B 87 166

    [17]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [18]

    Huang X L, Liu Y, Wang Z, Niu X Y 2014 Eur. Phys. J. Plus 129 4

    [19]

    Wu F, Chen L, Sun F, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [20]

    Ivanchenko E A 2015 Phys. Rev. E 92 032124

    [21]

    Altintas F, MstecaplioǧluÖ E 2015 Phys. Rev. E 92 022142

    [22]

    He X, He J, Zheng J 2012 Physica A 391 6594

    [23]

    Cakmak S, Altintas F, MstecaplioǧluÖ E 2016 Eur. Phys. J. Plus 131 197

    [24]

    Wang H, Liu S, He J 2009 Phys. Rev. E 79 041113

    [25]

    Hubner W, Lefkidis G, Dong C D, Chaudhuri D 2014 Phys. Rev. B 90 024401

    [26]

    Azimi M, Chotorlishvili L, Mishra S K, Vekua T, Hubner W, Berakdar J 2014 New J. Phys. 16 063018

    [27]

    Albayrak E 2013 Int. J. Quantum. Inform. 11 1350021

    [28]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003

    [29]

    Woo C H, Wen H, Semenov A A, Dudarev S L, Ma P W 2015 Phys. Rev. B 91 104306

    [30]

    Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E 2014 Phys. Rev. Lett. 112 030602

    [31]

    Zhang X Y, Huang X L, Yi X X 2014 J. Phys. A: Math. Theor. 47 455002.

    [32]

    Wang R, Wang J, He J, Ma Y 2013 Phys. Rev. E 87 042119

    [33]

    Uzdin R, Kosloff R 2014 Europhys. Lett. 108 40001

    [34]

    Altintas F, Hardal A U C, Mustecaplioglu O E 2015 Phys. Rev. A 91 023816

    [35]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [36]

    Dzyaloshinskii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [39]

    Zhang G F 2008 Eur. Phys. J. D 49 123

    [40]

    Li D C, Wang X P, Cao Z L 2008 J. Phys. Condens. Matter 20 325229

    [41]

    Zhong X M, Nguyen B A, Yun J X 2016 Phys. Rev. E 94 042135

    [42]

    RoSSnagel J, Dawkins S T, Tolazzi K N 2016 Science 352 325

    [43]

    Niu X Y, Huang X L, Shang Y F, Wang X Y 2015 Int. J. Mod. Phys. B 29 1550086

    [44]

    Huang X L, Niu X Y, Xiu X M, Yi X X 2014 Eur. Phys. J. D 68 32

  • [1] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何.  , 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [2] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展.  , 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [3] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [4] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究.  , 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [5] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率.  , 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [6] 覃觅觅, 罗勇, 杨阔, 黄勇. 170GHz兆瓦级同轴回旋振荡管的分析计算.  , 2014, 63(5): 050203. doi: 10.7498/aps.63.050203
    [7] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率.  , 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [8] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究.  , 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [9] 王涛, 黄晓理, 刘洋, 许欢. 带有Dzyaloshinski-Mariya相互作用的两比特XXZ模型的纠缠量子热机.  , 2013, 62(6): 060301. doi: 10.7498/aps.62.060301
    [10] 马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌. 回旋速调管放大器时域非线性理论与模拟.  , 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [11] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究.  , 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [12] 王建辉, 熊双泉, 何济洲, 刘江涛. 以一维谐振子势阱中的单粒子为工质的量子热机性能分析.  , 2012, 61(8): 080509. doi: 10.7498/aps.61.080509
    [13] 段羽, 陈平, 赵毅, 刘式墉. 新型有机白光器件的初步研究.  , 2011, 60(7): 077805. doi: 10.7498/aps.60.077805
    [14] 周庆, 陈钢, 胡月. 一个用简单物理模型构建的加密系统.  , 2011, 60(4): 044701. doi: 10.7498/aps.60.044701
    [15] 姜文龙, 丛林, 孟昭晖, 汪津, 韩强, 孟凡超, 王立忠, 丁桂英, 张刚. 室温下磁场对基于Alq3的有机电致发光器件的影响.  , 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [16] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光.  , 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [17] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池.  , 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究.  , 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率.  , 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
计量
  • 文章访问数:  6327
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-24
  • 修回日期:  2017-08-22
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map