搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅烯的化学功能化

杨硕 程鹏 陈岚 吴克辉

引用本文:
Citation:

硅烯的化学功能化

杨硕, 程鹏, 陈岚, 吴克辉

Chemical functionalization of silicene

Yang Shuo, Cheng Peng, Chen Lan, Wu Ke-Hui
PDF
导出引用
  • 硅烯是一种零能隙的狄拉克费米子材料,对其能带结构的有效调控进而打开带隙是硅烯进一步器件化的基础.而化学功能化是调控二维材料的结构和电子性质的一种有效方法.本文简要介绍了近几年在硅烯的化学功能化方面取得的进展,主要包括硅烯的氢化、氧化、氯化以及其他几种可能的化学修饰方法.
    Silicene exhibits extraordinary physical properties especially Dirac fermion characteristics. However, the zero-gap band structure of silicene hinders its applications in nanoelectronic and optoelectronic devices. It is thus desirable to open a finite band gap in silicene. Chemical functionalization is a commonly used method to tailor the structures and electronic properties of two-dimensional materials. In this paper we review the recent 3-year progress of silicene, including its hydrogenation, oxidization, halogenation, and other methods to modify silicene.
      通信作者: 程鹏, pcheng@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674368)资助的课题.
      Corresponding author: Cheng Peng, pcheng@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674368).
    [1]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Liu C C, Feng W, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [4]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [5]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [6]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802

    [7]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibrian J P 2012 J. Phys.: Condens. Matter 24 172001

    [8]

    Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211

    [9]

    Gou J, Zhong Q, Sheng S X, Li W B, Cheng P, Li H, Chen L, Wu K H 2016 2D Mater. 3 045005

    [10]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020

    [11]

    Li K L, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotech. 9 372

    [12]

    Feng B J, Zhang J, Zhong Q, Li W, Li S, Li H, Wu K 2016 Nat. Chem. 8 563

    [13]

    Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G, Wu K H 2012 Phys. Rev. Lett. 109 056804

    [14]

    Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590

    [15]

    Zhuang J C, Xu X, Du Y, Wu K H, Chen L, Hao W, Dou S X 2015 Phys. Rev. B 91 161409

    [16]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [17]

    Tsai W F, Huang C Y, Chang T, Lin R H, Jeng H T, Bansil A 2013 Nat. Commun. 4 1500

    [18]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502

    [19]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603

    [20]

    Tabert C J, Nicol E J 2013 Phys. Rev. Lett. 110 197402

    [21]

    Pan H, Li Z, Liu C C, Zhu G, Qiao Z, Yao Y G 2014 Phys. Rev. Lett. 112 106802

    [22]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [23]

    Lebgue S, Klintenberg M, Eriksson O, Katsnelson M 2009 Phys. Rev. B 79 245117

    [24]

    Voon L C L Y, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114

    [25]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107

    [26]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [27]

    Qiu J L, Fu H X, Xu Y, Oreshkin A I, Shao T N, Li H, Meng S, Chen L, Wu K H 2015 Phys. Rev. Lett. 114 126101

    [28]

    Qiu J L, Fu H X, Xu Y, Zhong Q, Meng S, Li H, Chen L, Wu K H 2015 ACS Nano 9 11192

    [29]

    Padova P D, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B, Lay G L 2014 2D Mater. 1 021003

    [30]

    Molle A, Grazianetti C, Chiappe D, Cinquanta E, Cianci E, Tallarida G, Fanciulli M 2013 Adv. Funct. Mater. 23 4340

    [31]

    Wang R, Pi X, Ni Z, Liu Y, Lin S, Xu M, Yang D 2013 Sci. Rep. 3 3507

    [32]

    Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X, Dou S X 2014 ACS Nano 8 10019

    [33]

    Xu X, Zhuang J C, Du Y, Feng H F, Zhang N, Liu C, Lei T, Wang J, Spencer M, Morishita T, Wang X L, Dou S X 2014 Sci. Rep. 4 7543

    [34]

    Du Y, Zhuang J C, Wang J, Li Z, Liu H S, Zhao J J, Xu X, Feng H F, Chen L, Wu K H, Wang X L, Dou S X 2016 Sci. Adv. 2 e1600067

    [35]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [36]

    Fu H X, Ren J, Chen L, Si C, Qiu J L, Li W B, Zhang J, Sun J T, Li H, Wu K H, Duan W H, Meng S 2016 Euro Phys. Lett. 113 67003

    [37]

    Li W B, Sheng S X, Chen J, Cheng P, Chen L, Wu K H 2016 Phys. Rev. B 93 155410

    [38]

    Osborn T H, Farajian A A 2012 J. Phys. Chem. C 116 22916

    [39]

    Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444

    [40]

    Pi X D, Ni Z Y, Liu Y, Ruan Z, Xu M, Yang D 2015 Phys. Chem. Chem. Phys. 17 4146

    [41]

    Wang R, Xu M S, Pi X D 2015 Chin. Phys. B 24 086807

    [42]

    Zheng R, Lin X, Ni J 2014 Appl. Phys. Lett. 105 092410

    [43]

    Friedlein R, van Bui H, Wiggers F B, Yamada-Takamura Y, Kovalgin A Y, de Jong M P 2014 J. Chem. Phys. 140 204705

    [44]

    Friedlein R, Fleurence A, Sadowski J T, Yamada-Takamura Y 2013 Appl. Phys. Lett. 102 221603

    [45]

    Zhao T, Zhang S, Wang Q, Kawazoe Y, Jena P 2014 Phys. Chem. Chem. Phys. 16 22979

  • [1]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Liu C C, Feng W, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [4]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [5]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [6]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802

    [7]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibrian J P 2012 J. Phys.: Condens. Matter 24 172001

    [8]

    Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211

    [9]

    Gou J, Zhong Q, Sheng S X, Li W B, Cheng P, Li H, Chen L, Wu K H 2016 2D Mater. 3 045005

    [10]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020

    [11]

    Li K L, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotech. 9 372

    [12]

    Feng B J, Zhang J, Zhong Q, Li W, Li S, Li H, Wu K 2016 Nat. Chem. 8 563

    [13]

    Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G, Wu K H 2012 Phys. Rev. Lett. 109 056804

    [14]

    Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590

    [15]

    Zhuang J C, Xu X, Du Y, Wu K H, Chen L, Hao W, Dou S X 2015 Phys. Rev. B 91 161409

    [16]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [17]

    Tsai W F, Huang C Y, Chang T, Lin R H, Jeng H T, Bansil A 2013 Nat. Commun. 4 1500

    [18]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502

    [19]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603

    [20]

    Tabert C J, Nicol E J 2013 Phys. Rev. Lett. 110 197402

    [21]

    Pan H, Li Z, Liu C C, Zhu G, Qiao Z, Yao Y G 2014 Phys. Rev. Lett. 112 106802

    [22]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [23]

    Lebgue S, Klintenberg M, Eriksson O, Katsnelson M 2009 Phys. Rev. B 79 245117

    [24]

    Voon L C L Y, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114

    [25]

    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107

    [26]

    Zhang P, Li X D, Hu C H, Wu S Q, Zhu Z Z 2012 Phys. Lett. A 376 1230

    [27]

    Qiu J L, Fu H X, Xu Y, Oreshkin A I, Shao T N, Li H, Meng S, Chen L, Wu K H 2015 Phys. Rev. Lett. 114 126101

    [28]

    Qiu J L, Fu H X, Xu Y, Zhong Q, Meng S, Li H, Chen L, Wu K H 2015 ACS Nano 9 11192

    [29]

    Padova P D, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B, Lay G L 2014 2D Mater. 1 021003

    [30]

    Molle A, Grazianetti C, Chiappe D, Cinquanta E, Cianci E, Tallarida G, Fanciulli M 2013 Adv. Funct. Mater. 23 4340

    [31]

    Wang R, Pi X, Ni Z, Liu Y, Lin S, Xu M, Yang D 2013 Sci. Rep. 3 3507

    [32]

    Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X, Dou S X 2014 ACS Nano 8 10019

    [33]

    Xu X, Zhuang J C, Du Y, Feng H F, Zhang N, Liu C, Lei T, Wang J, Spencer M, Morishita T, Wang X L, Dou S X 2014 Sci. Rep. 4 7543

    [34]

    Du Y, Zhuang J C, Wang J, Li Z, Liu H S, Zhao J J, Xu X, Feng H F, Chen L, Wu K H, Wang X L, Dou S X 2016 Sci. Adv. 2 e1600067

    [35]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [36]

    Fu H X, Ren J, Chen L, Si C, Qiu J L, Li W B, Zhang J, Sun J T, Li H, Wu K H, Duan W H, Meng S 2016 Euro Phys. Lett. 113 67003

    [37]

    Li W B, Sheng S X, Chen J, Cheng P, Chen L, Wu K H 2016 Phys. Rev. B 93 155410

    [38]

    Osborn T H, Farajian A A 2012 J. Phys. Chem. C 116 22916

    [39]

    Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444

    [40]

    Pi X D, Ni Z Y, Liu Y, Ruan Z, Xu M, Yang D 2015 Phys. Chem. Chem. Phys. 17 4146

    [41]

    Wang R, Xu M S, Pi X D 2015 Chin. Phys. B 24 086807

    [42]

    Zheng R, Lin X, Ni J 2014 Appl. Phys. Lett. 105 092410

    [43]

    Friedlein R, van Bui H, Wiggers F B, Yamada-Takamura Y, Kovalgin A Y, de Jong M P 2014 J. Chem. Phys. 140 204705

    [44]

    Friedlein R, Fleurence A, Sadowski J T, Yamada-Takamura Y 2013 Appl. Phys. Lett. 102 221603

    [45]

    Zhao T, Zhang S, Wang Q, Kawazoe Y, Jena P 2014 Phys. Chem. Chem. Phys. 16 22979

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 纪雨萱, 张明楷, 李妍. 二维光子晶体中的双波段半狄拉克锥与零折射率材料.  , 2024, 73(18): 181101. doi: 10.7498/aps.73.20240800
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控.  , 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [6] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究.  , 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [7] 骆全斌, 黄学勤, 邓伟胤, 吴迎, 陆久阳, 刘正猷. 声子晶体板中的第二类狄拉克点和边缘传输.  , 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [8] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究.  , 2021, (): . doi: 10.7498/aps.70.20211607
    [9] 杨俊涛, 熊永臣, 黄海铭, 罗时军. 多狄拉克锥的二维CrPSe3的半金属铁磁性与电子结构(已撤稿).  , 2020, 69(24): 247101. doi: 10.7498/aps.69.20200960
    [10] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展.  , 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [11] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化.  , 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [12] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性.  , 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [13] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯负极材料的粗粒模型.  , 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [14] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究.  , 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [15] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级.  , 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [16] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [17] 张弦, 郭志新, 曹觉先, 肖思国, 丁建文. GaAs(111)表面硅烯、锗烯的几何及电子性质研究.  , 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [18] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质.  , 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [19] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响.  , 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [20] 杨 华, 刘增平, 王学雷, 张胜海. 含外规范场和动力学费米子自能的狄拉克算符及费米子凝聚.  , 2006, 55(11): 5745-5754. doi: 10.7498/aps.55.5745
计量
  • 文章访问数:  7176
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-06
  • 修回日期:  2017-10-10
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map