搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤 王福合 尚家香

引用本文:
Citation:

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤, 王福合, 尚家香

First-principles study on the adsorption of oxygen at NiTi (110) surface

Liu Kun, Wang Fu-He, Shang Jia-Xiang
PDF
导出引用
  • 为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.
    NiTi alloys with equiatomic compositions have been widely used as structural materials in aerospace, aviation and other fields due to their shape memory effects and good mechanical performances. At the same time, they are considered as excellent biomedical materials for their biocompatibilities and high fatigue resistances. As structural materials, the oxidation resistance of NiTi alloy should be improved. However, as biomedical materials, the formation of dense TiO2 layers on the surface of NiTi alloy is required to suppress the release of Ni ions in body liquid. As a result, it is of great significance to study the oxidation mechanism of NiTi alloy. In this work, while the total number of Ti is kept the same as that of Ni atoms in the whole system, a series of defected c(22)-NiTi (110) surfaces with antisite of Ti are constructed to further understand the oxidation mechanism of NiTi alloy. The adsorption of oxygen atom at the NiTi (110) surface is investigated by the first-principles calculations. The calculated results show that the stability of the oxygen adsorption is strongly related to the enrichment of Ti atoms on the surface. The higher the enrichment of Ti atoms on the surface, the stronger the adsorption of oxygen atoms is. When the coverage of oxygen is high enough, the adsorption of oxygen atoms on the surface could cause the antisite of Ti atoms on the surface by the exchange of Ni atoms in the first layer with Ti atoms in other layers. Under the O-rich conditions (O -9.35 eV), it is the most stable that the oxygen atoms adsorbed on Ti antisite surface, with the whole Ni atoms in the first surface layer exchanged with the whole Ti atoms in the third surface layer. With the increase of the adsorbed oxygen atoms on the surface, the heights of Ti atoms in the surface layers are raised by the adsorption of oxygen. The TiO2 layer is formed by the expansive growth, while Ni atoms are enriched beneath the TiO2. As a result, the reason why the TiO2 layer is formed on the NiTi alloy surface in the experimental conditions is well explained.
      通信作者: 王福合, wfh-phy@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371017)资助的课题.
      Corresponding author: Wang Fu-He, wfh-phy@cnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371017).
    [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • [1] 方语萱, 杨益, 夏志良, 霍宗亮. 3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究.  , 2024, 73(12): 128502. doi: 10.7498/aps.73.20240254
    [2] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究.  , 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [3] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究.  , 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响.  , 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] 李宗宝, 王霞, 周瑞雪, 王应, 李勇. Cu-Ag协同表面改性TiO2的第一性原理研究.  , 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [8] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献. Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究.  , 2016, 65(6): 068201. doi: 10.7498/aps.65.068201
    [9] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究.  , 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [10] 郑树文, 范广涵, 张涛, 苏晨, 宋晶晶, 丁彬彬. 纤锌矿BexZn1-xO合金能隙弯曲系数的第一原理研究.  , 2013, 62(3): 037102. doi: 10.7498/aps.62.037102
    [11] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [12] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析.  , 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算.  , 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响.  , 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测.  , 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [17] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究.  , 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 黄 晋, 孙其诚. 一维液态泡沫渗流实验研究及表面能和粘性耗散分析.  , 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [20] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用.  , 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
计量
  • 文章访问数:  7200
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-29
  • 修回日期:  2017-07-26
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map