搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法

魏浩 孙凤举 呼义翔 邱爱慈

引用本文:
Citation:

欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法

魏浩, 孙凤举, 呼义翔, 邱爱慈

Method of optimizing secondary impedances for magnetically-insulated induction voltage adders with impedance under-matched loads

Wei Hao, Sun Feng-Ju, Hu Yi-Xiang, Qiu Ai-Ci
PDF
导出引用
  • 磁绝缘感应电压叠加器(MIVA)次级阻抗对脉冲功率驱动源和负载之间的功率耦合具有重要影响.基于稳态磁绝缘Creedon层流理论和鞘层电子流再俘获(re-trapping)理论,建立了负载欠匹配型MIVA电路分析方法,数值分析获得了MIVA输出参数(输出电压、阴/阳极电流和电功率)随负载欠匹配程度的变化规律.考虑阴极传导电流作为闪光X射线照相二极管的有效电流,建立了以MIVA末端X射线剂量率最大为目标的次级阻抗优化方法.获得了欠匹配型MIVA次级优化阻抗Zop*的变化规律:随着X射线剂量率对电压依赖程度提高,欠匹配型MIVA次级优化阻抗Zop*呈指数降低;负载阻抗越大,Zop*越大.
    The magnetically-insulated induction voltage adder (MIVA) is a pulsed-power accelerator widely used in the X-ray flash radiography and -ray radiation simulation. The operating impedance of magnetically-insulated transmission line (MITL) on the secondary side of MIVA will produce significant influence on the power coupling between the pulsed-power driving source and the terminal load. Therefore, optimizing the secondary impedance of MIVA to maximize the electrical-power or radiated output of load is critical for the design of MIVA facility. According to whether the MITL operating impedance is smaller than the load impedance, MIVAs can be divided into two different types, i.e., the impedance-matched case and impedance undermatched case. For the impedance-matched MIVA, because the MITL of MIVA operates at the minimal current point or self-limited flow, the output of MIVA just depends on the MITL operating impedance and is independent of load. Correspondingly, the circuit analysis is relatively easy. However, for MIVA with impedance undermatched load, the analysis method is more complicated. Based on the classical Creedon theory of the magnetic insulation equilibrium and the sheath electron re-trapping theory, a circuit method is established for MIVA with impedance under-matched load. The analysis process consists of two steps. Firstly, the working point of the forward magnetic insulation wave is solved by the minimal current theory on the assumption that the MIVA is terminated by impedance-matched load. Then, the actual operating point after the re-trapping wave has passed is solved, in which the characteristic impedance of the re-trapping wave is treated as a vacuum impedance. And the relationship between the output parameters of MIVA, e.g., the output voltage, the cathode and anode current, and the electrical power, and the undermatched extent of load is obtained numerically. Based on the analysis method, a method to optimize the secondary impedance of MIVA with ten-stage cavities stacked in series to drive X-ray radiographic diodes is developed. This optimization method aims at maximizing the radiated X-ray dose rate of the diode loads on the assumption that only the cathode current is available for the X-ray radiographic diode. The optimization secondary impedance, Zop*, varying with the scaling factor, , is achieved, where is the power exponent between the dose rate and the diode voltage (Ḋ Ud). is usually determined by the diode type, geometrical structure, and operating characteristics. It is found that the optimization secondary impedance Zop* decays exponentially with the increase of value , i.e., the increase of the diode-voltage-dependent degree of the radiated X-ray dose rate. And the larger the load impedance, the larger the value of Zop* is. The circuit analysis method and the impedance optimization method developed in this paper are specially useful for the applications of MIVA in the flash radiographic fields.
      通信作者: 魏浩, weihao@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11505138,51577156)资助的课题.
      Corresponding author: Wei Hao, weihao@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505138, 51577156).
    [1]

    Smith I D 2004 Phys. Rev. Spec. Top. Accel. Beams 7 064801

    [2]

    Smith I D, Bailey V L, Fockler J, Gustwiller J S, Johnson D L, Maenchen J E, Droemer D W 2000 IEEE Trans. on Plasma Sci. 28 1653

    [3]

    Oliver B V 2008 Proceeding of 17th IEEE High Power Particle Beams Conference Xi' an, Shaanxi, China, July 7-11, 2008 p1

    [4]

    Thomas K 2014 IEEE Pulsed Power Symposium Loughborough, UK, March 18-20, 2014, pp1-29

    [5]

    Thomas K, Beech P, Brown S, Buck J, Burscough J, Clough S, Crotch I, Duff Y J, Goes C, Huckle I, Jones A, King A, Stringer B, Threadgold J, Trenaman S, Wheeldon R, Woodroofe M, Carboni V, DaSilva T, Galver B, Glazebrook W, Hanzel K, Pearce J, Pham J, Pomeroy S, Saunders W, Speits D, Warren T, Whitney B, Wilson J 2011 Proceeding of 18th IEEE Pulsed Power Conference Chicago, IL, June 19-23, 2011 p1042

    [6]

    Guo F, Zou W K, Gong B Y, Jiang J H, Chen L, Wang M, Xie W P 2017 Phys. Rev. Accel. Beams 20 020401

    [7]

    Wei H, Sun F J, Qiu A C, Zeng J T, Liang T X, Yin J H, Hu Y X 2014 IEEE Trans. Plasma Sci. 42 3057

    [8]

    Sun F J, Qiu A C, Yang H L, Zeng J T, Gai T Y, Liang T X, Yin J H, Sun J F, Cong P T, Huang J J, Su Z F, Gao Y, Liu Z G, Jiang X F, Li J Y, Zhang Z, Song G Z, Pei M J, Niu S L 2010 High Power and Laser and Particle Beams 22 936 (in Chinese)[孙凤举, 邱爱慈, 杨海亮, 曾江涛, 盖同阳, 梁天学, 尹佳辉, 孙剑锋, 丛培天, 黄建军, 苏兆锋, 高屹, 刘志刚, 姜晓锋, 李静雅, 张众, 宋顾周, 裴明敬, 牛胜利2010强激光与粒子束22 936]

    [9]

    Zhang T K, Han D, Wu Y C, Yan Y H, Zhao Z Q, Gu Y Q 2016 Acta Phys. Sin. 65 045203 (in Chinese)[张天奎, 韩丹, 吴玉迟, 闫永宏, 赵宗清, 谷渝秋2016 65 045203]

    [10]

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402 (in Chinese)[魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈2017 66 038402]

    [11]

    Zhou J, Zhang P F, Yang H L, Sun J, Sun J F, Su Z F, Liu W D 2012 Acta Phys. Sin. 61 245203 (in Chinese)[周军, 张鹏飞, 杨海亮, 孙江, 孙剑峰, 苏兆锋, 刘万东2012 61 245203]

    [12]

    Bailey V, Corcoran P, Carboni V, Smith I, Johnson D L, Oliver B, Thomas K, Swierkosz M 2005 Proceeding of 15th IEEE Pulsed Power Conference Monterey, CA, USA, June 13-15, 2005 p322

    [13]

    Bailey V L, Johnson D L, Corcoran P, Smith I, Maenchen J E, Molina I, Hahn K, Rovang D, Portillo S, Oliver B V, Rose D, Welsh D, Droemer D, Guy T 2003 Proceeding of 14th IEEE International Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p399

    [14]

    Ottinger P, Schumer J, Hinshelwood D, Allen R J 2008 IEEE Trans. Plasma Sci. 36 2708

    [15]

    Ottinger P, Schumer J 2006 Phys. Plasma 13 063109

    [16]

    Pate R C, Patterson J C, Dowdican M C, Ramirez J J, Hasti D E, Tolk K M, Poukey J W, Schneider L X, Rosenthal S E, Sanford T W, Alexander J A, Heath C E 1987 Proceeding of 6th IEEE Pulsed Power Conference Arlington, Virginia, 1987 pp478-481

    [17]

    Guo F, Zou W K, Chen L 2014 High Power and Laser and Particle Beams 26 045010(in Chinese)[郭帆, 邹文康, 陈林2014强激光与粒子束26 045010]

    [18]

    Liu X S 2005 High Pulsed Power Technologh (Beijing:National Defense Industry Press) pp128-262(in Chinese)[刘锡三2005高功率脉冲技(北京:国防工业出版社)第128262页].

    [19]

    Zou W K, Deng J J, Song S Y 2007 High Power and Laser and Particle Beams 19 992(in Chinese)[邹文康, 邓建军, 宋盛义2007强激光与粒子束19 992]

    [20]

    Bailey V L, Corcoran P, Johnson D L, Smith I, Oliver B, Maenchen J 2007 Proceeding of 16th IEEE Pulsed Power Conference Albuquerque, New Mexico, USA, June 17-22, 2007 p1268

    [21]

    Bailey V L, Corcoran P, Johnson D L, Smith I D, Maenchen J E, Rahn K D, Molina I, Rovang D C, Portillo S, Puetz E A, Oliver B V, Rose D V, Welch D R, Droemer D W, Guy T 2004 Proceeding of 14th IEEE high Power Beams Conference Dallas, Texas, USA, 2004 p247

    [22]

    Hahn K, B V Oliver, Cordova S R, Leckbee J, Molina I, Johnston M, Webb T, Bruner N, Welch D R, Portillo S, ZiskaD, Crotch I, Threadgold J 2009 Proceeding of 17th IEEE Pulsed Power Conference Washington, DC, USA, June 28-July 2, 2009 p34

    [23]

    Hahn K, Maenchen J, Cordova S, Molina I, Portillo S, Rovang D, Rose D, Oliver B, Welch D, Bailey V, Johnson D L, Schamiloglu E 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p871

    [24]

    Portillo S, Hahn K, Maenchen J, Molina I, Cordova S, Johnson D L, Rose D, Oliver B, Welch D 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p879

    [25]

    Hu Y X, Sun F J, Zeng J T, Cong P T 2015 Modern Appl. Phys. 6 191 (in Chinese)[呼义翔, 孙凤举, 曾江涛, 丛培天2015现代应用物理6 191]

    [26]

    Wei H 2017 Ph. D. Dissertation (Xi' an:Xi' an Jiaotong University) (in Chinese)[魏浩2017博士学位论文(西安:西安交通大学)]

    [27]

    Creedon J M 1975 J. Appl. Phys. 46 2946

  • [1]

    Smith I D 2004 Phys. Rev. Spec. Top. Accel. Beams 7 064801

    [2]

    Smith I D, Bailey V L, Fockler J, Gustwiller J S, Johnson D L, Maenchen J E, Droemer D W 2000 IEEE Trans. on Plasma Sci. 28 1653

    [3]

    Oliver B V 2008 Proceeding of 17th IEEE High Power Particle Beams Conference Xi' an, Shaanxi, China, July 7-11, 2008 p1

    [4]

    Thomas K 2014 IEEE Pulsed Power Symposium Loughborough, UK, March 18-20, 2014, pp1-29

    [5]

    Thomas K, Beech P, Brown S, Buck J, Burscough J, Clough S, Crotch I, Duff Y J, Goes C, Huckle I, Jones A, King A, Stringer B, Threadgold J, Trenaman S, Wheeldon R, Woodroofe M, Carboni V, DaSilva T, Galver B, Glazebrook W, Hanzel K, Pearce J, Pham J, Pomeroy S, Saunders W, Speits D, Warren T, Whitney B, Wilson J 2011 Proceeding of 18th IEEE Pulsed Power Conference Chicago, IL, June 19-23, 2011 p1042

    [6]

    Guo F, Zou W K, Gong B Y, Jiang J H, Chen L, Wang M, Xie W P 2017 Phys. Rev. Accel. Beams 20 020401

    [7]

    Wei H, Sun F J, Qiu A C, Zeng J T, Liang T X, Yin J H, Hu Y X 2014 IEEE Trans. Plasma Sci. 42 3057

    [8]

    Sun F J, Qiu A C, Yang H L, Zeng J T, Gai T Y, Liang T X, Yin J H, Sun J F, Cong P T, Huang J J, Su Z F, Gao Y, Liu Z G, Jiang X F, Li J Y, Zhang Z, Song G Z, Pei M J, Niu S L 2010 High Power and Laser and Particle Beams 22 936 (in Chinese)[孙凤举, 邱爱慈, 杨海亮, 曾江涛, 盖同阳, 梁天学, 尹佳辉, 孙剑锋, 丛培天, 黄建军, 苏兆锋, 高屹, 刘志刚, 姜晓锋, 李静雅, 张众, 宋顾周, 裴明敬, 牛胜利2010强激光与粒子束22 936]

    [9]

    Zhang T K, Han D, Wu Y C, Yan Y H, Zhao Z Q, Gu Y Q 2016 Acta Phys. Sin. 65 045203 (in Chinese)[张天奎, 韩丹, 吴玉迟, 闫永宏, 赵宗清, 谷渝秋2016 65 045203]

    [10]

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402 (in Chinese)[魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈2017 66 038402]

    [11]

    Zhou J, Zhang P F, Yang H L, Sun J, Sun J F, Su Z F, Liu W D 2012 Acta Phys. Sin. 61 245203 (in Chinese)[周军, 张鹏飞, 杨海亮, 孙江, 孙剑峰, 苏兆锋, 刘万东2012 61 245203]

    [12]

    Bailey V, Corcoran P, Carboni V, Smith I, Johnson D L, Oliver B, Thomas K, Swierkosz M 2005 Proceeding of 15th IEEE Pulsed Power Conference Monterey, CA, USA, June 13-15, 2005 p322

    [13]

    Bailey V L, Johnson D L, Corcoran P, Smith I, Maenchen J E, Molina I, Hahn K, Rovang D, Portillo S, Oliver B V, Rose D, Welsh D, Droemer D, Guy T 2003 Proceeding of 14th IEEE International Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p399

    [14]

    Ottinger P, Schumer J, Hinshelwood D, Allen R J 2008 IEEE Trans. Plasma Sci. 36 2708

    [15]

    Ottinger P, Schumer J 2006 Phys. Plasma 13 063109

    [16]

    Pate R C, Patterson J C, Dowdican M C, Ramirez J J, Hasti D E, Tolk K M, Poukey J W, Schneider L X, Rosenthal S E, Sanford T W, Alexander J A, Heath C E 1987 Proceeding of 6th IEEE Pulsed Power Conference Arlington, Virginia, 1987 pp478-481

    [17]

    Guo F, Zou W K, Chen L 2014 High Power and Laser and Particle Beams 26 045010(in Chinese)[郭帆, 邹文康, 陈林2014强激光与粒子束26 045010]

    [18]

    Liu X S 2005 High Pulsed Power Technologh (Beijing:National Defense Industry Press) pp128-262(in Chinese)[刘锡三2005高功率脉冲技(北京:国防工业出版社)第128262页].

    [19]

    Zou W K, Deng J J, Song S Y 2007 High Power and Laser and Particle Beams 19 992(in Chinese)[邹文康, 邓建军, 宋盛义2007强激光与粒子束19 992]

    [20]

    Bailey V L, Corcoran P, Johnson D L, Smith I, Oliver B, Maenchen J 2007 Proceeding of 16th IEEE Pulsed Power Conference Albuquerque, New Mexico, USA, June 17-22, 2007 p1268

    [21]

    Bailey V L, Corcoran P, Johnson D L, Smith I D, Maenchen J E, Rahn K D, Molina I, Rovang D C, Portillo S, Puetz E A, Oliver B V, Rose D V, Welch D R, Droemer D W, Guy T 2004 Proceeding of 14th IEEE high Power Beams Conference Dallas, Texas, USA, 2004 p247

    [22]

    Hahn K, B V Oliver, Cordova S R, Leckbee J, Molina I, Johnston M, Webb T, Bruner N, Welch D R, Portillo S, ZiskaD, Crotch I, Threadgold J 2009 Proceeding of 17th IEEE Pulsed Power Conference Washington, DC, USA, June 28-July 2, 2009 p34

    [23]

    Hahn K, Maenchen J, Cordova S, Molina I, Portillo S, Rovang D, Rose D, Oliver B, Welch D, Bailey V, Johnson D L, Schamiloglu E 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p871

    [24]

    Portillo S, Hahn K, Maenchen J, Molina I, Cordova S, Johnson D L, Rose D, Oliver B, Welch D 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15-18, 2003 p879

    [25]

    Hu Y X, Sun F J, Zeng J T, Cong P T 2015 Modern Appl. Phys. 6 191 (in Chinese)[呼义翔, 孙凤举, 曾江涛, 丛培天2015现代应用物理6 191]

    [26]

    Wei H 2017 Ph. D. Dissertation (Xi' an:Xi' an Jiaotong University) (in Chinese)[魏浩2017博士学位论文(西安:西安交通大学)]

    [27]

    Creedon J M 1975 J. Appl. Phys. 46 2946

  • [1] 龚振洲, 魏浩, 范思源, 洪亚平, 吴撼宇, 邱爱慈. 15 MA Z箍缩装置真空磁绝缘传输线鞘层电子流分析.  , 2023, 72(3): 035204. doi: 10.7498/aps.72.20221901
    [2] 龚振洲, 魏浩, 范思源, 孙凤举, 吴撼宇, 邱爱慈. 15 MA Z箍缩装置真空磁绝缘传输线损失电流的电路模拟.  , 2022, 71(10): 105202. doi: 10.7498/aps.71.20212378
    [3] 魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈. 一种非轴对称磁绝缘电子鞘层边界的计算方法.  , 2017, 66(3): 038402. doi: 10.7498/aps.66.038402
    [4] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响.  , 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [5] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性.  , 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [6] 陈玉, 陈家麟, 查国桥, 周世平. 石墨烯铁磁-绝缘层-超导结的输运.  , 2014, 63(17): 177402. doi: 10.7498/aps.63.177402
    [7] 吕厚祥, 石德政, 谢征微. 铁磁/半导体(绝缘体)/铁磁异质结中渡越时间与两铁磁层磁矩夹角变化的关系.  , 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [8] 陈代兵, 张运俭, 张北镇, 王冬, 秦奋, 文杰, 金晓, 吴勇, 于爱民. 磁绝缘线振荡器阴极烧蚀与电压波形的关系研究.  , 2013, 62(1): 012901. doi: 10.7498/aps.62.012901
    [9] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究.  , 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [10] 周军, 张鹏飞, 杨海亮, 孙江, 孙剑峰, 苏兆锋, 刘万东. 同轴圆柱形磁绝缘传输线前沿损失与工作电压关系.  , 2012, 61(24): 245203. doi: 10.7498/aps.61.245203
    [11] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极.  , 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [12] 陈代兵, 王冬, 秦奋, 文杰, 金晓, 安海狮, 张新凯. 磁绝缘线振荡器的起振电压与注入电压关系的分析.  , 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [13] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响.  , 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [14] 王 冬, 陈代兵, 范植开, 邓景康. HEM11模磁绝缘线振荡器的高频分析.  , 2008, 57(8): 4875-4882. doi: 10.7498/aps.57.4875
    [15] 李晓薇. 铁磁超导态/绝缘层/自旋三重态p波超导体结的直流Josephson电流.  , 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
    [16] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象.  , 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [17] 李晓薇. 正常金属-绝缘层-铁磁/超导结微分电导峰的Zeeman劈裂.  , 2005, 54(5): 2313-2317. doi: 10.7498/aps.54.2313
    [18] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响.  , 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [19] 董正超, 陈贵宾, 邢定钰, 董锦明. 铁磁-绝缘层-d波超导结中的Andreev反射特性.  , 2000, 49(11): 2276-2280. doi: 10.7498/aps.49.2276
    [20] 董正超. 正常金属-铁磁绝缘层-d波超导结中的磁散射对量子输运的影响.  , 1999, 48(12): 2357-2363. doi: 10.7498/aps.48.2357
计量
  • 文章访问数:  5561
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10
  • 修回日期:  2017-07-03
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map