搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反对称Spin-1/2阻挫钻石链的基态和磁化行为研究

赵阳 齐岩 杜安 刘佳 肖瑞 单莹 吴忧 杨思浩

引用本文:
Citation:

反对称Spin-1/2阻挫钻石链的基态和磁化行为研究

赵阳, 齐岩, 杜安, 刘佳, 肖瑞, 单莹, 吴忧, 杨思浩

Ground-state and magnetization behavior of the frustrated spin-1/2 antisymmetric diamond chain

Zhao Yang, Qi Yan, Du An, Liu Jia, Xiao Rui, Shan Ying, Wu You, Yang Si-Hao
PDF
导出引用
  • 对含有次近邻节点自旋交换耦合的自旋-1/2伊辛-海森伯钻石链体系进行了研究,利用矩阵对角化和传递矩阵方法对基态磁相和宏观热力学量进行了严格求解,重点探讨了所有交换耦合均为反铁磁耦合时,体系节点伊辛自旋间次近邻相互作用的影响.研究结果表明次近邻节点伊辛自旋存在反铁磁耦合时会增强系统的阻挫效应,引入破坏平移对称性的经典亚铁磁相,使基态呈现出上上上下上上的自旋构型以及磁化曲线新颖的2/3磁化平台,丰富了体系的基态相图和宏观磁性行为.
    The low-dimensional quantum spin systems have been extensively studied in the past three decades due to the novel ground states and rich magnetic behaviors,especially the quantum spin chain with diamond topology structure. Motivated by recent experimental success in Cu3(CO3)2(OH)2 compound,which is regarded as a model material of spin-1/2 diamond chain,researchers have paid a lot of attention to various variants of diamond spin chains.In this paper,we mainly examine the magnetic properties of an antisymmetric spin-1/2 Ising-Heisenberg diamond chain with the secondneighbor interaction between nodal spins.By using exact diagonalization and transfer-matrix methods,the ground-state phase diagram,magnetization behavior and macroscopic thermodynamics are exactly solved for the particular case that all magnetic bonds yield antiferromagnetic couplings,which usually shows the most interesting magnetic features closely related to a striking interplay between geometric frustration and quantum fluctuations.To clearly illustrate the effect of second-neighbor interaction item,we consider a highly frustrated situation that all Ising-Heisenberg bonds and Heisenberg bonds possess the same interaction strength.The calculation results indicate that the second-neighbor interaction item will enrich ground states and magnetization plateaus.A classical ferrimagnetic phase FRI1 corresponding to a novel two-thirds of intermediate plateau with translationally broken symmetry is introduced,manifesting itself as up-up-up-down-up-up spin configuration at a ground-state.In addition,there are other four distinct ground states which can be identified from the phase diagram,i.e.,one saturated paramagnetic phase SP,one classical ferrimagnetic phase FRI2,one quantum ferrimagnetic phase QFI and the unique quantum antiferromagnetic phase QAF.The classical phase FRI2 and quantum phase QFI both generate one-third of magnetization plateau.It is worth mentioning that all the values of these magnetization plateaus satisfy the Oshikawa-Yamanaka-Affleck condition.Besides,the results also have shown a rich variety of temperature dependence of total magnetization and specific heat.The magnetization displays the remarkable thermal-induced changes as the external field is sufficiently close to critical value where two or more than two different ground states coexist.At the critical field relevant to a coexistence of two different states,the total magnetization displays a monotonic decrease trend.The thermal dependence of zero-field specific heat displays relative complex variations for different second-neighbor interactions between nodal spins.At first,the specific heat presents only a single rounded Schottky-type maximum.Using the second-neighbor interaction,another sharp peak arises at low-temperature and is superimposed on this round maximum,and the specific heat exhibits a double-peak structure. On further strengthening,the low-temperature one keeps its height shifting towards high temperature,while the hightemperature round peak suffers great enhancement and moves in an opposite direction.Finally,the low temperature peak entirely merges with the Schottky-type peak at a certain value of second-neighbor interaction,and above this value, the specific curve recovers its single peak structure.The observed double-peak specific heat curves mainly originate from thermal excitations between the ground-state spin configuration QAF and the ones close enough in energy to the ground state.
      通信作者: 齐岩, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn ; 杜安, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11547236)、辽宁省教育厅一般项目(批准号:L2015130)、大连民族大学大学生创新创业训练计划项目(批准号:201712026371)和中央高校基本科研业务费(批准号:DC201501065,DCPY2016014)资助的课题.
      Corresponding author: Qi Yan, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn ; Du An, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Dalian Minzu University, China (Grant No. 201712026371), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DC201501065, DCPY2016014).
    [1]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Kuwai T 2004 J. Magn. Magn. Mater. 272 900

    [2]

    Rule K C, Wolter A U B, Sllow S, Tennant D A, Brhl A, Khler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [3]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Dasgupta T S, Janson O, Rosner H, Brhl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [4]

    Takano K, Kubo K, Sakamoto H 1996 J. Phys.: Condens. Matter 8 6405

    [5]

    Okamoto K, Tonegawa T, Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979

    [6]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [7]

    Ivanov N B, Richter J, Schulenburg J 2009 Phys. Rev. B 79 104412

    [8]

    Aimo F, Krmer S, Klanjek M, Horvatić M, Berthier C 2011 Phys. Rev. B 84 012401

    [9]

    Takano K, Suzuki H, Hida K 2009 Phys. Rev. B 80 104410

    [10]

    Gu B, Su G 2007 Phys. Rev. B 75 17443

    [11]

    Verkholyak T, Strečka J 2013 Phys. Rev. B 88 134419

    [12]

    Pereira M S S, de Moura F A B F, Lyra M L 2008 Phys. Rev. B 77 024402

    [13]

    Rojas O, de Souza S M, Ohanyan V, Khurshudyan M 2011 Phys. Rev. B 83 094430

    [14]

    Pereira M S S, de Moura F A B F, Lyra M L 2009 Phys. Rev. B 79 054427

    [15]

    Strečka J, Jačur M 2003 J. Phys.:Condens. Matter 15 4519

    [16]

    Čanov L, Strečka J, Jačur M 2006 J. Phys.:Condens. Matter 18 4967

    [17]

    Valverde J S, Rojas O, de Souza S M 2008 J. Phys.:Condens. Matter 20 345208

    [18]

    Torrico J, Rojas M, Pereira M S S, Strečka J, Lyra M L 2016 Phys. Rev. B 93 014428

    [19]

    Ohanyan V, Honecker A 2012 Phys. Rev. B 86 054412

    [20]

    Hovhannisyan V V, Ananikian N S, Kenna R 2016 Physica A 453 116

    [21]

    Hovhannisyan V V, Strečka J, Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401

    [22]

    Visinescu D, Madalan A M, Andruh M, Duhayon C, Sutter J P, Ungur L, van den Heuvel W, Chibotaru L F 2009 Chem. Eur. J 15 11808

    [23]

    van den Heuvel W, Chibotaru L F 2010 Phys. Rev. B 82 174436

  • [1]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Kuwai T 2004 J. Magn. Magn. Mater. 272 900

    [2]

    Rule K C, Wolter A U B, Sllow S, Tennant D A, Brhl A, Khler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [3]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Dasgupta T S, Janson O, Rosner H, Brhl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [4]

    Takano K, Kubo K, Sakamoto H 1996 J. Phys.: Condens. Matter 8 6405

    [5]

    Okamoto K, Tonegawa T, Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979

    [6]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [7]

    Ivanov N B, Richter J, Schulenburg J 2009 Phys. Rev. B 79 104412

    [8]

    Aimo F, Krmer S, Klanjek M, Horvatić M, Berthier C 2011 Phys. Rev. B 84 012401

    [9]

    Takano K, Suzuki H, Hida K 2009 Phys. Rev. B 80 104410

    [10]

    Gu B, Su G 2007 Phys. Rev. B 75 17443

    [11]

    Verkholyak T, Strečka J 2013 Phys. Rev. B 88 134419

    [12]

    Pereira M S S, de Moura F A B F, Lyra M L 2008 Phys. Rev. B 77 024402

    [13]

    Rojas O, de Souza S M, Ohanyan V, Khurshudyan M 2011 Phys. Rev. B 83 094430

    [14]

    Pereira M S S, de Moura F A B F, Lyra M L 2009 Phys. Rev. B 79 054427

    [15]

    Strečka J, Jačur M 2003 J. Phys.:Condens. Matter 15 4519

    [16]

    Čanov L, Strečka J, Jačur M 2006 J. Phys.:Condens. Matter 18 4967

    [17]

    Valverde J S, Rojas O, de Souza S M 2008 J. Phys.:Condens. Matter 20 345208

    [18]

    Torrico J, Rojas M, Pereira M S S, Strečka J, Lyra M L 2016 Phys. Rev. B 93 014428

    [19]

    Ohanyan V, Honecker A 2012 Phys. Rev. B 86 054412

    [20]

    Hovhannisyan V V, Ananikian N S, Kenna R 2016 Physica A 453 116

    [21]

    Hovhannisyan V V, Strečka J, Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401

    [22]

    Visinescu D, Madalan A M, Andruh M, Duhayon C, Sutter J P, Ungur L, van den Heuvel W, Chibotaru L F 2009 Chem. Eur. J 15 11808

    [23]

    van den Heuvel W, Chibotaru L F 2010 Phys. Rev. B 82 174436

  • [1] 谢元栋. 各向异性海森伯自旋链中的超椭圆函数波解.  , 2018, 67(19): 197502. doi: 10.7498/aps.67.20181005
    [2] 郑一丹, 毛竹, 周斌. 具有三角自旋环的伊辛-海森伯链的热纠缠.  , 2017, 66(23): 230304. doi: 10.7498/aps.66.230304
    [3] 范竑锐, 袁亚丽, 侯喜文. 用两比特海森伯XY模型研究热几何失协.  , 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [4] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解.  , 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [5] 刘聪, 徐晓东, 刘晓峻. 全向入射条件下一维固流周期结构中低频声裂隙变化特性研究.  , 2013, 62(20): 204302. doi: 10.7498/aps.62.204302
    [6] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图.  , 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [7] 周宗立, 章国顺, 娄平. 相互作用突然开启后的反铁磁海森伯模型.  , 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [8] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [9] 林力, 李云, 顾兆林, 刘兆杰, 程光旭. 计算二维声腔传递矩阵的正方形线声源模型.  , 2009, 58(8): 5484-5490. doi: 10.7498/aps.58.5484
    [10] 吴重庆, 赵 爽. 电偶极子源定位问题的研究.  , 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [11] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解.  , 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [12] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解.  , 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [13] 黄时中, 阮图南, 吴宁, 郑志鹏. 自旋为5/2的Bargmann-Wigner方程的严格解.  , 2001, 50(8): 1456-1462. doi: 10.7498/aps.50.1456
    [14] 郭 华. 粒子质量显含时间的Dirac方程的严格解.  , 1999, 48(6): 983-986. doi: 10.7498/aps.48.983
    [15] 孙久勋. 严格可解四参数双原子分子势函数.  , 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [16] 陈小余. 三维Ising模型矩阵解法的简化与近似解.  , 1995, 44(9): 1484-1488. doi: 10.7498/aps.44.1484
    [17] 王福高, 胡嘉桢. Union Jack晶格上伊辛模型的自由费密近似解.  , 1993, 42(5): 853-858. doi: 10.7498/aps.42.853
    [18] 唐坤发, 胡嘉桢. 无序区域上推广混合自旋模型的严格解.  , 1988, 37(9): 1564-1568. doi: 10.7498/aps.37.1564
    [19] 吴自玉, 汪克林. 严格的聚乙炔连续模型.  , 1986, 35(7): 931-938. doi: 10.7498/aps.35.931
    [20] 杨展如, 伍法岳. 一个镶嵌稀释双键Potts模型的严格解.  , 1985, 34(4): 484-492. doi: 10.7498/aps.34.484
计量
  • 文章访问数:  5144
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-14
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map