搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁光材料Verdet常数贡献性的讨论

蔡伟 邢俊晖 杨志勇

引用本文:
Citation:

磁光材料Verdet常数贡献性的讨论

蔡伟, 邢俊晖, 杨志勇

Contributions to Verdet constant of magneto-optical materials

Cai Wei, Xing Jun-Hui, Yang Zhi-Yong
PDF
导出引用
  • Verdet常数是表征材料磁光性能的重要参数,具有波长和温度依赖性.为了更好地分析入射光波长、温度等对Verdet常数的影响机理,从基础理论切入,分析了现有理论的优缺点.结合光的波粒二象性特性,提出了波动跃迁性贡献理论,即法拉第效应是光的波动性作用以及电偶极跃迁作用带来的贡献之和,波动性对偏转角的贡献为正,跃迁性贡献为负.在抗磁性材料中,波动性贡献大于跃迁性贡献,Verdet常数为正;顺磁性材料中,跃迁性贡献远大于波动性贡献,Verdet常数为负.进而分别以典型抗磁性材料重火石玻璃ZF1和顺磁性材料铽镓石榴石为例,并结合相关数据、参数、模型,对理论进行了验证.试验结果表明,在精确描述材料Verdet常数方面,波动跃迁性贡献理论具有一定的优越性.
    Verdet constant is one of the key parameters to characterize the material magneto-optical properties, and dependent on wavelength and temperature. In order to thoroughly analyze the influence mechanisms of the incident wavelength and temperature on the Verdet constant and then uncover its essence, both the advantages and disadvantages of the classical electronic dynamics theory and quantum theory are discussed on account of basic theories and test data. However, neither of the two theories can be separately used to fully explain the Verdet constant and the correlative test data. Therefore, based on the essential property of the magneto-optical effect, the interactions between the incident light and magnetic matter in a magnetic field are studied, and then a hypothesis which suggests that the Faraday effect result from the combination of various factors is proposed. Furthermore, a theory of wave-transition contribution to the Verdet constant is deduced by adopting the theory of wave-particle duality. That is, the Faraday effect is caused by two different contributions simultaneously. One is the wave contribution, which is the interaction between the wave aspect of light and the magneto-optical medium, and the other refers to the transition contribution, which comes from the electronic transition. When the light enters into a deflection angle, the wave contribution is positive while the transition contribution is negative. In a diamagnetic material, since the wave contribution is greater than the transition contribution, the diamagnetic Verdet constant is positive while in a paramagnetic material, on the contrary, the transition contribution is much larger than the wave contribution, so the paramagnetic Verdet constant is negative. According to the above-mentioned theory, the diamagnetic Verdet constant model and the paramagnetic Verdet constant model are proposed by combining the two parts together. Taking the typical diamagnetic material ZF1 and the typical paramagnetic terbium gallium garnet for example, the influences of the incident wavelength and the temperature on the Verdet constant are analyzed, and the deduced theory together with the corresponding models is tested and verified by analyzing the relevant parameters and the test data. Accordingly, the research turns out that the theoretical results correspond to the real values, which proves the rationality of the hypothesis and the authenticity of the deduced theory. Compared with the traditional theories, the wave-transition contribution theory and its model are superior in the sense of precisely describing the material Verdet constant.
      通信作者: 邢俊晖, 582072026@qq.com
    • 基金项目: 光电控制技术重点实验室和航空科学基金联合资助项目(批准号:201551U8008)和国家自然科学基金(批准号:61505254)资助的课题.
      Corresponding author: Xing Jun-Hui, 582072026@qq.com
    • Funds: Project supported by the Key Laboratory of Optoelectronic Control Technology and Aviation Science Foundation, China (Grant No. 201551U8008) and the National Natural Science Foundation of China (Grant No. 61505254).
    [1]

    Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]

    [5]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]

    [6]

    Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899

    [7]

    Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]

    [8]

    Tan C Z, Arndt J 1996 Physica B 233 1

    [9]

    Robet S 1932 Phys. Rev. 41 489

    [10]

    Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641

    [11]

    Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]

    [12]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17

    [13]

    Borrelli N F 1964 J. Chem. Phys. 41 3289

    [14]

    Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]

    [15]

    Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [16]

    Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]

    [17]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683

    [18]

    Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]

    [19]

    Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]

    [20]

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]

    [21]

    Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]

    [22]

    Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]

    [23]

    Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91

    [24]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1

    [25]

    Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38

    [26]

    Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495

    [27]

    Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86

  • [1]

    Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]

    [5]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]

    [6]

    Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899

    [7]

    Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]

    [8]

    Tan C Z, Arndt J 1996 Physica B 233 1

    [9]

    Robet S 1932 Phys. Rev. 41 489

    [10]

    Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641

    [11]

    Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]

    [12]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17

    [13]

    Borrelli N F 1964 J. Chem. Phys. 41 3289

    [14]

    Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]

    [15]

    Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [16]

    Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]

    [17]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683

    [18]

    Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]

    [19]

    Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]

    [20]

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]

    [21]

    Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]

    [22]

    Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]

    [23]

    Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91

    [24]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1

    [25]

    Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38

    [26]

    Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495

    [27]

    Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86

  • [1] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [2] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211626
    [3] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] 吕鑫. 相干与路径信息.  , 2020, 69(7): 070301. doi: 10.7498/aps.69.20191084
    [5] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算.  , 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [6] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转.  , 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [7] 颜森林. 半导体激光器混沌法拉第效应控制方法.  , 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [8] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强.  , 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [9] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除.  , 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [10] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响.  , 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [11] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [12] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究.  , 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [13] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射.  , 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [14] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法.  , 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [15] 刘成周, 张昌平, 王忠林. 静态 dilaton 黑洞中带电磁荷粒子的隧穿效应.  , 2009, 58(11): 7491-7496. doi: 10.7498/aps.58.7491
    [16] 夏 天, 张国营, 张学龙, 薛刘萍. 晶场二级效应与交换作用对PrF3晶体磁性及磁光性质的影响.  , 2007, 56(3): 1741-1745. doi: 10.7498/aps.56.1741
    [17] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [18] 毕亚军, 杨国琛, 关荣华. 液晶胆甾相的形成机制.  , 2004, 53(12): 4287-4292. doi: 10.7498/aps.53.4287
    [19] 刘公强, 朱莲根, 卫邦达, 张宁杲. 动态法拉第效应及其损耗机制.  , 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [20] 刘公强, 黄燕萍. 顺磁性物质中法拉第磁光效应及其温度特性的量子理论.  , 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
计量
  • 文章访问数:  8774
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-06-16
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map