-
发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields. In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation. The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme. In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence. By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly. Protons with energies above 3 MeV have a divergence angle of 5.3° at the time of 500 fs in the channel target case, while the value is 17.1° in the foil case for a laser intensity of 5.4×1019 W/cm2. Additionally, the effect of the channel target on the maximum proton energy is considered. The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target. This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential. Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target. Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.
-
Keywords:
- laser proton acceleration /
- structured target /
- proton beam collimation /
- particle-in-cell simulation
[1] Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751
[2] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436
[3] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240
[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001
[5] Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013 62 114103]
[6] Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107
[7] Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488
[8] Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[9] Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001
[10] Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002
[11] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009 58 363]
[12] Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291
[13] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542
[14] Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670
[15] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[16] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002
[17] Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002
[18] Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801
[19] Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401
[20] Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004
[21] Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104
[22] Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410
[23] Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305
[24] Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004
[25] Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112
[26] Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585
[27] Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319
[28] Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112
[29] Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107
[30] Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202
[31] Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106
[32] Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103
[33] Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002
-
[1] Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751
[2] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436
[3] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240
[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001
[5] Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013 62 114103]
[6] Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107
[7] Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488
[8] Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[9] Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001
[10] Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002
[11] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009 58 363]
[12] Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291
[13] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542
[14] Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670
[15] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[16] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002
[17] Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002
[18] Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801
[19] Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401
[20] Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004
[21] Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104
[22] Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410
[23] Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305
[24] Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004
[25] Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112
[26] Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585
[27] Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319
[28] Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112
[29] Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107
[30] Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202
[31] Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106
[32] Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103
[33] Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002
计量
- 文章访问数: 5746
- PDF下载量: 210
- 被引次数: 0