搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时域混合算法在一维海面与舰船目标复合电磁散射中的应用

王强 郭立新

引用本文:
Citation:

时域混合算法在一维海面与舰船目标复合电磁散射中的应用

王强, 郭立新

Composite electromagnetic scattering from a ship located on one-dimensional sea surface with time-domain hybrid method

Wang Qiang, Guo Li-Xin
PDF
导出引用
  • 采用时域积分方程(TDIE)与时域基尔霍夫近似(TDKA)的混合算法研究粗糙海面与舰船目标的复合瞬态电磁散射.该方法将舰船目标及其近邻海面划分为TDIE区域,用TDIE方法精确求解;将剩余电大尺寸的粗糙海面划分为TDKA区域,采用高效的TDKA电流近似求解.通过混合算法和传统TDIE算法结果的对比,表明TDIE-TDKA混合算法能保证计算的精度,同时具有较高的计算效率.最后,讨论了海面上方有无目标、海面上方风速、电磁脉冲入射角、舰船目标尺寸、吃水深度对后向散射磁场的影响.
    With the development of broadband radar technology, transient composite scattering from a target and a randomly rough surface has aroused a great interest in oceanic remote sensing, target identification, and military applications. Time-domain integral equation (TDIE) is an effective numerical method of analyzing transient and broadband electromagnetic problems. However, the high computational complexity of numerical methods restricts its applications in analyzing the electrically large rough surfaces. To improve computational efficiency, hybrid methods have been developed by combining an analytical method with a numerical algorithm, and used to solve the electromagnetic scattering of a composite model. In these hybrid methods, numerical methods are used to calculate the scattering from a target, and analytical methods are employed to solve the scattering from a rough surface. To our knowledge, most of the hybrid methods for composite electromagnetic scattering are frequency-domain algorithms and used to investigate composite scattering from a rough surface with a target above it. Few papers have been published on the analysis of transient scattering from a rough surface with a target by using the time-domain hybrid methods. In the present paper, an efficient time-domain hybrid method that combines time-domain Kirchhoff approximation (TDKA) with TDIE is first designed to investigate the transient electromagnetic scattering from a ship located on a randomly rough sea surface. In this hybrid method, the ship and its adjacent sea surface are chosen as TDIE region and the rest of the rough surface is TDKA region. Considering the interactions between the TDIE region and the TDKA region, the hybrid TDIE-TDKA formula is derived and solved with an iterated marching-on-in-time method. Initially, the induced currents of the TDIE region are acquired by solving TDIE. Then, the currents in the TDKA region are obtained via TDKA method. The interactions between the currents in the TDKA region are neglected. The efficiency and accuracy of the hybrid TDIE-TDKA method depend on the size of the TDIE region. The minimum length of sea surface in the TDIE region is at least the size of the ship due to the strong interactions between the ship and its adjacent sea surface. Numerical results show that the hybrid TDIE-TDKA method presented in this paper is accurate and efficient compared with the full TDIE. Moreover, the influences of the ship size, the wind speed, the incident angle, and the depth of the ship immersing in sea surface on the backscattered far magnetic field are discussed in detail.
      通信作者: 郭立新, lxguo@xidian.edu.cn
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号:61621005)、国家自然科学基金重点项目(批准号:61431010)和陕西省教育厅科学研究计划项目(批准号:15JK1180)资助的课题.
      Corresponding author: Guo Li-Xin, lxguo@xidian.edu.cn
    • Funds: Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61621005), the National Natural Science Foundation of China (Grant No. 61431010), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 15JK1180).
    [1]

    Holliday D 1987 IEEE Trans. Antennas Propag. 35 120

    [2]

    Voronovich A 1994 Waves Random Media 4 337

    [3]

    Winebrenner D, Ishimaru A 1985 Radio Sci. 20 161

    [4]

    Lentz R R 1974 Radio Sci. 9 1139

    [5]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese)[徐润汶, 郭立新, 范天奇2013 62 170301]

    [6]

    Li J, Guo L X, Zeng H 2008 Waves Random Media 18 641

    [7]

    Wang R, Guo L X, Li J, Liu X Y 2009 Sci. China G:Phys. Mech. Astron. 52 665

    [8]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [9]

    He S Y, Zhu G Q 2007 Microw. Opt. Technol. Lett. 49 2957

    [10]

    Li J, Guo L X, He Q 2011 Electron. Lett. 47 1147

    [11]

    Qin S T, Guo L X, Dai S Y, Gong S X 2011 Acta Phys. Sin. 60 074217(in Chinese)[秦三团, 郭立新, 代少玉, 龚书喜2011 60 074217]

    [12]

    Li J, Guo L X, Jiao Y C, Li K 2011 Opt. Express 19 1091

    [13]

    Yang L X, Ge D B, Wei B 2007 Prog. Electromagn. Res. 76 275

    [14]

    Walker S P, Vartiainen M J 1998 IEEE Trans. Antennas Propag. 46 318

    [15]

    Ren M, Zhou D M, Li Y, He J G 2008 Electron. Lett. 44 258

    [16]

    Qin Y, Zhou D, He J, Liu P 2009 Prog. Electromagn. Res. M 8 153

    [17]

    Qin S T, Gong S X, Wang R, Guo L X 2010 Prog. Electromagn. Res. 102 181

    [18]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 1103

    [19]

    Rao S M, Wilton D R 1991 IEEE Trans. Antennas Propag. 39 56

    [20]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 661

    [21]

    Kuga Y, Phu P 1996 Prog. Electromagn. Res. 14 37

    [22]

    Li J, Wei B, He Q, Guo L X, Ge D B 2011 Prog. Electromagn. Res. 121 391

  • [1]

    Holliday D 1987 IEEE Trans. Antennas Propag. 35 120

    [2]

    Voronovich A 1994 Waves Random Media 4 337

    [3]

    Winebrenner D, Ishimaru A 1985 Radio Sci. 20 161

    [4]

    Lentz R R 1974 Radio Sci. 9 1139

    [5]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese)[徐润汶, 郭立新, 范天奇2013 62 170301]

    [6]

    Li J, Guo L X, Zeng H 2008 Waves Random Media 18 641

    [7]

    Wang R, Guo L X, Li J, Liu X Y 2009 Sci. China G:Phys. Mech. Astron. 52 665

    [8]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [9]

    He S Y, Zhu G Q 2007 Microw. Opt. Technol. Lett. 49 2957

    [10]

    Li J, Guo L X, He Q 2011 Electron. Lett. 47 1147

    [11]

    Qin S T, Guo L X, Dai S Y, Gong S X 2011 Acta Phys. Sin. 60 074217(in Chinese)[秦三团, 郭立新, 代少玉, 龚书喜2011 60 074217]

    [12]

    Li J, Guo L X, Jiao Y C, Li K 2011 Opt. Express 19 1091

    [13]

    Yang L X, Ge D B, Wei B 2007 Prog. Electromagn. Res. 76 275

    [14]

    Walker S P, Vartiainen M J 1998 IEEE Trans. Antennas Propag. 46 318

    [15]

    Ren M, Zhou D M, Li Y, He J G 2008 Electron. Lett. 44 258

    [16]

    Qin Y, Zhou D, He J, Liu P 2009 Prog. Electromagn. Res. M 8 153

    [17]

    Qin S T, Gong S X, Wang R, Guo L X 2010 Prog. Electromagn. Res. 102 181

    [18]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 1103

    [19]

    Rao S M, Wilton D R 1991 IEEE Trans. Antennas Propag. 39 56

    [20]

    Vechinski D A, Rao S M 1992 IEEE Trans. Antennas Propag. 40 661

    [21]

    Kuga Y, Phu P 1996 Prog. Electromagn. Res. 14 37

    [22]

    Li J, Wei B, He Q, Guo L X, Ge D B 2011 Prog. Electromagn. Res. 121 391

  • [1] 袁倩, 周培阳, 何姿, 陈学文, 丁大志. 基于混合场积分方程的半空间上方金属目标电磁散射特性高效分析.  , 2022, 71(11): 114101. doi: 10.7498/aps.71.20212152
    [2] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响.  , 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [3] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法.  , 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [4] 田炜, 任新成, 郭立新. 海面与其上方双矩形截面柱复合散射的混合算法研究.  , 2015, 64(17): 174101. doi: 10.7498/aps.64.174101
    [5] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究.  , 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [6] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [7] 吴庚坤, 姬光荣, 姬婷婷, 任红霞. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究.  , 2014, 63(13): 134203. doi: 10.7498/aps.63.134203
    [8] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [9] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法.  , 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [10] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用.  , 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [11] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [12] 秦三团, 郭立新, 代少玉, 龚书喜. 二维随机粗糙面上导体目标复合瞬态散射的混合算法.  , 2011, 60(7): 074217. doi: 10.7498/aps.60.074217
    [13] 魏兵, 何琼, 李杰, 葛德彪, 郭立新. 一种计算分层半空间上方导线瞬态响应的新方法.  , 2011, 60(10): 104102. doi: 10.7498/aps.60.104102
    [14] 李彦敏, 梅凤翔. 广义Birkhoff方程的积分方法.  , 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [15] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究.  , 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [16] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征.  , 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [17] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究.  , 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [18] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用.  , 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [20] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.  , 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
计量
  • 文章访问数:  5647
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04
  • 修回日期:  2017-06-03
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map