搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米淀粉固态电解质质子\电子杂化突触晶体管

郭立强 陶剑 温娟 程广贵 袁宁一 丁建宁

引用本文:
Citation:

玉米淀粉固态电解质质子\电子杂化突触晶体管

郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁

Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor

Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning
PDF
导出引用
  • 随绿色可持续发展观念的深入人心,研究人员致力于寻找天然有机材料应用于功能性电子器件.淀粉以其低廉的价格、丰富的来源和优异的机械性能进入了科研人员的视野.淀粉可由玉米、马铃薯、甘薯和葛根等含淀粉的物质中提取而得,一般不溶于水,在和水加热至一定温度时,则糊化成胶状溶液.本文通过旋涂法将玉米淀粉的胶状溶液旋涂至氧化铟锡玻璃表面,然后在30℃恒温环境中晾干制备成固态胶合状薄膜.以此薄膜作为固态电解质制备了氧化铟锌突触晶体管,并实现了生物神经突触的双脉冲易化、学习记忆能力、高通滤波等可塑性行为的仿真.本研究以玉米淀粉固态胶合薄膜作为电解质大大降低了氧化物薄膜晶体管固态电解质的成本,且该电解质无毒性、来源丰富,将为人工神经网络的开发提供一种可选择的元件.
    A human brain is a high-density neural network, which has~1011 neurons and~1015 synapses. Neuron as a basic information processing unit builds the biological neural network, and the realization of information transmission and integration depends on the synaptic connection between neurons. This information transfer and integration work is difficult to realize by relying on von Neumann computer, due to the computer only works according to the well-defined programs. To further simulate the imagery thinking of human brain neural network, the researchers begin with the information memory and processing mechanism of human brain neural network. A large number of microelectronic devices with human thinking characteristics are designed, such as memristor, atomic switch, phase change memory, and transistors. The oxide-based thin film transistor under the new material system is one of these devices, and has attracted the attention of researchers. The transistors working as the biological synapses, the gate electrode is regard as presynaptic input terminal, and the channel current is measured as postsynaptic output. Utilizing the proton gating behaviors, a series of synaptic behaviors, such as short-term and long-term memory, paired-pulse facilitation, and spike timing-dependent plasticity is mimicked successfully in these synaptic transistors.#br#With the progressing of science and technology, and the increasing of requirements for environmental protection, researchers pay more attention to the environmentally friendly solid electrolyte materials to fabricate oxide-based thin film synaptic transistor. Researchers have a major interest in starch, due to the low price, rich source, and excellent mechanical properties. Starch can be extracted from corn, potato, sweet potato and other starch-containing substances, and is generally insoluble in cold water, and gelatinized in boiling water. In this study, corn starch solid electrolyte is prepared on ITO glass by spin coating progress, and dried at a constant temperature at 30℃. The electrical performances of protonic/electronic hybrid IZO synaptic transistor gated by corn starch solid electrolyte are excellent, operation voltage, Ion/off ratio, field-effect mobility and subthreshold swing are 1.5 V, 1×107, 18.7 cm2·V-1·s-1 and 156.8 mV/dec., respectively. Due to the mobile proton migrating in corn starch solid electrolyte, the paired-pulse facilitation, learning and memory behaviors and high-pass filter of biological neural synaptic plasticity are realized successfully. The synaptic transistors have potential applications in the field of environment-friendly microelectronic devices to reduce the production costs. Therefore, the corn starch solid electrolyte gated proton/electron hybrid synaptic transistor as an artificial synapse can offer a suitable option to building the neural network.
      通信作者: 陶剑, 2221603047@stmail.ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51402321)、国家自然科学基金重大研究计划培育项目(批准号:91648109)、江苏省博士后科研资助计划(批准号:1402071B)和江苏省普通高校专业学位研究生创新计划项目(批准号:SJLX16_0437)资助的课题.
      Corresponding author: Tao Jian, 2221603047@stmail.ujs.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51402321), the Major Cultivation Program of the National Natural Science Foundation of China (Grant No. 91648109), Postdoctoral Research Funding Plan of Jiangsu Province of China (Grant No. 1402071B) and Graduate Student Research and Innovation Program in Jiangsu Province of China (Grant No. SJLX16_0437).
    [1]

    Aram Z, Jafari Z, Mab J, Sprott J C, Zendehrouh S, Pham V T 2017 Commun. Nonlinear Sci. Numer. Simulat. 44 449

    [2]

    Zhang S J, Ding D, Wei G L, Liu Y, Alsaadi F E 2017 Neurocomputing 260 257

    [3]

    Borders W A, Akima H, Fukami S, Moriya S, Horio Y, Sato S, Ohno H 2017 Appl. Phys. Express 10 013007

    [4]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams S T 2010 Nature 464 873

    [5]

    Li Y H, Yang Y C, Gao X M, Yuan J L, Zhu G X, Zhang Z Y, Wang Y J 2016 IEEE Electron Dev. Lett. 37 1434

    [6]

    Kim H, Park J, Kwon M W, Lee J H, Park B G 2016 IEEE Electron Dev. Lett. 37 249

    [7]

    Yuan H, Shimotan H, Tsukazaki A, Ohtomo A 2010 J. Am. Chem. Soc. 132 6672

    [8]

    Rocco A M, Fonseca C P D, Pereira R P 2002 Polymer 43 3601

    [9]

    Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J 2015 J. Power Sources 278 375

    [10]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167

    [11]

    Liu Y H, Zhu L Q, Shi Y, Wan Q 2014 Appl. Phys. Lett. 104 133504

    [12]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305(in Chinese)[朱德明, 门传玲, 曹敏, 吴国栋2013 62 117305]

    [13]

    Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Lwasa Y 2009 Adv. Funct. Mater. 19 1046

    [14]

    Lu A X, Sun J, Jiang J, Wan Q 2009 Appl. Phys. Lett. 95 222905

    [15]

    Wu G, Feng P, Wan X, Zhu L, Shi Y, Wan Q 2016 Sci. Rep. 6 23578

    [16]

    Wu G, Zhang J, Wan X, Yang Y, Jiang S 2014 J. Mater. Chem. C 2 6249

    [17]

    Gomes M E, Ribeiro A S, Malafaya P B, Reis R L, Cunha A M 2001 Biomaterials 22 883

    [18]

    Ohkita T, Lee S H 2004 J. Appl. Polym. Sci. 97 1107

    [19]

    Finkenstadt V L, Willett J L 2004 J. Polym. Environ. 12 43

    [20]

    Lu A X, Sun J, Jiang J, Wan Q 2010 IEEE Electron Dev. Lett. 31 1137

    [21]

    Wu G D, Zhou J M, Zhang H L, Zhu L Q, Wan Q 2012 IEEE Electron Dev. Lett. 33 1720

    [22]

    Stute R 1992 Starch-Starke 44 205

    [23]

    Ramesh S, Liew C W, Arof A K 2011 J. Non-Cryst. Solids 357 3654

    [24]

    Raeishosseini N, Lee J S 2016 ACS Appl. Mat. Interfaces 8 7326

    [25]

    And D T, Søderman O 2002 J. Phys. Chem. B 106 11887

    [26]

    Zhitenev N B, Sidorenko A, Tennant D M, Cirelli R A 2007 Nat. Nanotechnol. 2 237

    [27]

    Teoh K H, Lim C S, Liew C W, Ramesh S 2015 Ionics 21 2061

    [28]

    Liew C W, Ramesh S, Ramesh K, Arof A K 2012 J. Solid State Electrochem. 16 1869

    [29]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [30]

    Guo L Q, Wen J, Cheng G G, Yuan N Y, Ding J N 2016 Acta Phys. Sin. 65 178501 (in Chinese)[郭立强, 温娟, 程广贵, 袁宁一, 丁建宁2016 65 178501]

    [31]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese)[赵孔胜, 轩瑞杰, 韩笑, 张耕铭2012 61 197201]

  • [1]

    Aram Z, Jafari Z, Mab J, Sprott J C, Zendehrouh S, Pham V T 2017 Commun. Nonlinear Sci. Numer. Simulat. 44 449

    [2]

    Zhang S J, Ding D, Wei G L, Liu Y, Alsaadi F E 2017 Neurocomputing 260 257

    [3]

    Borders W A, Akima H, Fukami S, Moriya S, Horio Y, Sato S, Ohno H 2017 Appl. Phys. Express 10 013007

    [4]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams S T 2010 Nature 464 873

    [5]

    Li Y H, Yang Y C, Gao X M, Yuan J L, Zhu G X, Zhang Z Y, Wang Y J 2016 IEEE Electron Dev. Lett. 37 1434

    [6]

    Kim H, Park J, Kwon M W, Lee J H, Park B G 2016 IEEE Electron Dev. Lett. 37 249

    [7]

    Yuan H, Shimotan H, Tsukazaki A, Ohtomo A 2010 J. Am. Chem. Soc. 132 6672

    [8]

    Rocco A M, Fonseca C P D, Pereira R P 2002 Polymer 43 3601

    [9]

    Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J 2015 J. Power Sources 278 375

    [10]

    Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167

    [11]

    Liu Y H, Zhu L Q, Shi Y, Wan Q 2014 Appl. Phys. Lett. 104 133504

    [12]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305(in Chinese)[朱德明, 门传玲, 曹敏, 吴国栋2013 62 117305]

    [13]

    Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Lwasa Y 2009 Adv. Funct. Mater. 19 1046

    [14]

    Lu A X, Sun J, Jiang J, Wan Q 2009 Appl. Phys. Lett. 95 222905

    [15]

    Wu G, Feng P, Wan X, Zhu L, Shi Y, Wan Q 2016 Sci. Rep. 6 23578

    [16]

    Wu G, Zhang J, Wan X, Yang Y, Jiang S 2014 J. Mater. Chem. C 2 6249

    [17]

    Gomes M E, Ribeiro A S, Malafaya P B, Reis R L, Cunha A M 2001 Biomaterials 22 883

    [18]

    Ohkita T, Lee S H 2004 J. Appl. Polym. Sci. 97 1107

    [19]

    Finkenstadt V L, Willett J L 2004 J. Polym. Environ. 12 43

    [20]

    Lu A X, Sun J, Jiang J, Wan Q 2010 IEEE Electron Dev. Lett. 31 1137

    [21]

    Wu G D, Zhou J M, Zhang H L, Zhu L Q, Wan Q 2012 IEEE Electron Dev. Lett. 33 1720

    [22]

    Stute R 1992 Starch-Starke 44 205

    [23]

    Ramesh S, Liew C W, Arof A K 2011 J. Non-Cryst. Solids 357 3654

    [24]

    Raeishosseini N, Lee J S 2016 ACS Appl. Mat. Interfaces 8 7326

    [25]

    And D T, Søderman O 2002 J. Phys. Chem. B 106 11887

    [26]

    Zhitenev N B, Sidorenko A, Tennant D M, Cirelli R A 2007 Nat. Nanotechnol. 2 237

    [27]

    Teoh K H, Lim C S, Liew C W, Ramesh S 2015 Ionics 21 2061

    [28]

    Liew C W, Ramesh S, Ramesh K, Arof A K 2012 J. Solid State Electrochem. 16 1869

    [29]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [30]

    Guo L Q, Wen J, Cheng G G, Yuan N Y, Ding J N 2016 Acta Phys. Sin. 65 178501 (in Chinese)[郭立强, 温娟, 程广贵, 袁宁一, 丁建宁2016 65 178501]

    [31]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese)[赵孔胜, 轩瑞杰, 韩笑, 张耕铭2012 61 197201]

  • [1] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性.  , 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [2] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管.  , 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [3] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用.  , 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [4] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性.  , 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [5] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性.  , 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [6] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性.  , 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [8] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性.  , 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [9] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管.  , 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [10] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析.  , 2015, 64(3): 034209. doi: 10.7498/aps.64.034209
    [11] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响.  , 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [12] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性.  , 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [13] 陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁. 对称双缺陷光子晶体的可调谐滤波特性分析.  , 2014, 63(15): 154207. doi: 10.7498/aps.63.154207
    [14] 王身云, 刘少斌. 基于等离子体缺陷层的一维可调谐微波光子晶体滤波特性.  , 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
    [15] 张 姗, 吴福全, 吴闻迪. 多级石英晶体旋光光学滤波器的滤波特性.  , 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [16] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究.  , 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [17] 舒 斌, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英. SiGe电荷注入晶体管的直流特性模型.  , 2007, 56(2): 1105-1109. doi: 10.7498/aps.56.1105
    [18] 侯林涛, 黄 飞, 彭俊彪, 曹 镛. 高效饱和红光聚电解质的发光及电子注入特性研究.  , 2007, 56(10): 6104-6108. doi: 10.7498/aps.56.6104
    [19] 茅惠兵, 杨昌利, 赖宗声. 光子晶体可调谐滤波特性的理论研究.  , 2004, 53(7): 2201-2205. doi: 10.7498/aps.53.2201
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析.  , 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  6617
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map