-
提出了一种新型的基于Savart偏光镜的外差式偏振干涉成像光谱技术,该技术在偏振干涉成像光谱仪中引入一对平行偏振光栅对,使其得到的干涉图频率与波数相关,具有了波数外差的特点,降低了干涉图频率,从而可利用较少的采样点数实现很高的光谱分辨率.对外差式偏振干涉成像光谱技术的基本原理进行了研究,详细分析了系统光程差、干涉图表达式、光谱分辨率以及光谱复原方法等.最后给出了外差式偏振干涉成像光谱仪的设计实例并进行了计算机仿真模拟,所复原的光谱与输入光谱曲线相符合,验证了方案的正确性.外差式偏振干涉成像光谱仪具有结构紧凑、光通量高、稳定性强、光谱分辨率高的特点,尤其适合超小型高稳定性、高探测灵敏度的高光谱探测应用.A novel heterodyne polarization interference imaging spectroscopy (HPⅡS) based on a Savart polariscope is proposed in this paper. The HPⅡS is modified by introducing a pair of parallel polarization gratings into the static polarization interference imaging spectrometer. Because of the introduced parallel polarization gratings, the lateral displacements of the two beams split by the Savart polariscope vary with wavenumber. The frequency of the interferogram obtained on the detector is related to wavenumber. Like the spatial heterodyne spectrometer where the two end mirrors in a Michelson interferometer are replaced with two matched diffraction gratings, the zero frequency of the interferogram generated in HPⅡS corresponds to a heterodyne wavenumber instead of the zero wavenumber in a non-heterodyne spectrometer. Due to the heterodyne characteristics, a high spectral resolution can be achieved using a small number of sampling points. In addition, there is no slit in HPⅡS and it is an imaging Fourier transform spectrometer that records a two-dimensional image of a scene superimposed with interference curves. It is a temporally and spatially combined modulated Fourier transform spectrometer and the interferogram of one point from the scene is generated by picking up the corresponding pixels from a sequence of images which are acquired by scanning the scene. As a true imaging spectrometer, HPⅡS also has high sensitivity and high signal-to-noise ratio. In this paper, the basic principle of HPⅡS is studied. The optical path difference produced by the Savart polariscope and the parallel polarization gratings is calculated. The interferogram expression, the spectral resolution, and the spectrum reconstruction method are elaborated. As the relationship between the frequency of the interferogram and the wavenumber of the incident light is nonlinear, the input spectrum can be recovered using Fourier transform combined with the method of stationary phase. Also, the matrix inversion method can be used to recover the input spectrum. Finally, a design example of HPⅡS is given. The interferogram is simulated, and the recovered spectrum shows good agreement with the input spectrum. In the design example, the spectral range is 16667-18182 cm-1(550-600 nm), and the number of sampling points is 500. The spectral resolution of HPⅡS is 6.06 cm-1, which is 12 times smaller than that in a non-heterodyne spectrometer with the same spectral range and sampling numbers. HPⅡS has the advantages of compact structure, high optical throughput, strong stability, and high spectral resolution. It is especially suitable for hyperspectral detection with ultra-small, high stability, and high sensitivity.
-
Keywords:
- Fourier transform spectroscopy /
- interference /
- polarization /
- spatial heterodyne
[1] Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096
[2] Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035
[3] Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807
[4] Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698
[5] Smith W H, Hammer P D 1996 Appl. Opt. 35 2902
[6] Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228
[7] Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957
[8] Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21
[9] Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]
[10] Dohi T, Suzuki T 1971 Appl. Opt. 10 1137
[11] Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234
[12] Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343
[13] Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829
[14] Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239
[15] Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148
[16] Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413
[17] Oh C, Escuti M J 2008 Opt. Lett. 33 2287
[18] Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283
[19] Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19
[20] Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]
[21] Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85
[22] Zhang C M, Jian X H 2010 Opt. Lett. 35 366
[23] Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]
[24] Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]
-
[1] Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096
[2] Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035
[3] Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807
[4] Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698
[5] Smith W H, Hammer P D 1996 Appl. Opt. 35 2902
[6] Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228
[7] Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957
[8] Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21
[9] Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]
[10] Dohi T, Suzuki T 1971 Appl. Opt. 10 1137
[11] Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234
[12] Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343
[13] Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829
[14] Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239
[15] Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148
[16] Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413
[17] Oh C, Escuti M J 2008 Opt. Lett. 33 2287
[18] Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283
[19] Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19
[20] Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]
[21] Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85
[22] Zhang C M, Jian X H 2010 Opt. Lett. 35 366
[23] Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]
[24] Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]
计量
- 文章访问数: 7128
- PDF下载量: 245
- 被引次数: 0