搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用数值模式匹配算法高效仿真轴对称型散射体海洋可控源电磁响应

林蔺 焦利光 陈博 康庄庄 马玉刚 汪宏年

引用本文:
Citation:

用数值模式匹配算法高效仿真轴对称型散射体海洋可控源电磁响应

林蔺, 焦利光, 陈博, 康庄庄, 马玉刚, 汪宏年

Efficient simulation of marine controlled source electromagnetic responses for axisymmetric scatter by using numerical mode matching approach

Lin Lin, Jiao Li-Guang, Chen Bo, Kang Zhuang-Zhuang, Ma Yu-Gang, Wang Hong-Nian
PDF
导出引用
  • 圆盘、球体以及球冠状体是地球物理研究中非常重要的一类散射类型.在海洋环境中,圆盘可以用于描述玄武岩基岩以及油气圈闭构造等电阻率异常体,而球冠可以近似描述某些基岩隆起或起伏地形等.这类散射体的一个重要特征是其电阻率空间分布具有轴对称性.如果能够针对这类形状的散射体研究建立一套有效的海洋可控源电磁数值模拟方法,对于认识复杂地层条件下海洋电磁响应的变化特征、研究建立相关的资料处理和解释方法具有非常重要的意义.本文根据电导率轴对称分布特征,设法用一个或多个不同半径、不同厚度的水平同心圆盘逼近这类轴对称电导率散射体,并将这些同心圆盘与海洋环境中的空气、海水、沉积层和基岩等背景介质结合,形成一个在水平方向电导率具有轴对称分布、在垂直方向又具有分层特征的水平层状非均质模型.在此基础上,应用数值模式匹配法研究水平电偶极子天线电磁场的数值模拟方法,给出位于对称轴上的水平发射天线电磁场在层状非均质地层中的半解析解,建立海洋可控源电磁响应高效算法.最后通过数值模拟结果对该算法进行检验并考察海洋可控源三维电磁响应特征.
    Horizontal disk, sphere, and spherical crown are a very important type of scatter in geophysics research. In the marine environment, a disk-like scatter can be used to describe several resistive targets, e.g., basaltic sills and stratigraphic hydrocarbon reservoirs while spherical crown can be used to approximately depict the topography of interface for basement rock. This type of scatter has characteristics of axisymmetrical distribution of the conductivity. If some approaches can be established to efficiently simulate the marine controlled source electromagnetic (MCSEM) response to this scatter, it will be meaningful to investigate the nature of MCSEM responses in complex formation and to build appropriate method of processing and explaining MCSEM data. In this paper, the resistive scatters are approximated by one or several horizontal concentric disks with different radii and thickness values, based on the axially symmetrical spatial distribution of conductivity. Then, a combination of these concentric disks with air, sea water and surrounding beds will construct a horizontally stratified inhomogeneous formation with common axis-center, whose spatial distribution of conductivity is layered in the vertical direction and axisymmetric in the horizontal direction. Based on the approximations mentioned above, the computation of MCSEM response excited by horizontal electrical dipole (HED) located at the z-axis is entirely transformed into two axially symmetrical problems for the Fourier harmonic components of the electromagnetic (EM) fields. The differential operators about the horizontal magnetic components and transformation of horizontal electrical components and other EM components from horizontal magnetic components are derived. Then, the numerical mode matching approach is extended to the simulation of the EM field and three-dimensional (3D) MCSEM responses excited by the HED in the formation. The procedure for solving the EM field is presented. The semi-analytic solution of EM field in the whole space is obtained to efficiently and numerically model MCSEM response in the complex formation. Finally, the efficiency and accuracy of the present method are demonstrated numerically. The characteristics of 3D MCSEM responses in three different cases are further investigated.
      通信作者: 汪宏年, wanghn@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41574110)和国家高技术研究发展计划重大项目(批准号:2012AA09A20103)资助的课题.
      Corresponding author: Wang Hong-Nian, wanghn@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.41574110) and the National High-tech R&D Program,Major Project,China (Grant No.2012AA09A20103).
    [1]

    Edwards N 2005 Surv. Geophys. 26 675

    [2]

    Constable S 2010 Geophysics 75 75A67

    [3]

    Yuan J, Edwards N 2000 Geophys. Res. Lett. 27 2397

    [4]

    Weiss C J, Constable S 2006 Geophysics 71 G321

    [5]

    Constable S C, Weiss C J 2006 Geophysics 71 G43

    [6]

    Hoversten G M, Newman G A, Geier A, Flanagan G 2006 Geophysics 71 G239

    [7]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese)[汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]

    [8]

    Li Y G, Dai S K 2011 Geophys. J. Int. 185 622

    [9]

    Xu Z F, Wu X P 2010 Chinese J. Geophys. 53 1931 (in Chinese)[徐志锋, 吴小平 2010 地球 53 1931]

    [10]

    Shen J S 2003 Chin. J. Geophys. 46 280 (in Chinese)[沈金松 2003 地球 46 280]

    [11]

    Streich R 2009 Geophysics 74 F95

    [12]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese)[周建美, 张烨, 汪宏年, 杨守文, 殷长春 2014 63 159101]

    [13]

    Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 58 1608]

    [14]

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848]

    [15]

    Kong F N, Johnstad S E, Rösten T, Westerdahl H 2008 Geophysics 73 F9

    [16]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383

    [17]

    Wang H N, Tao H G, Yang S W 2008 Chin. J. Geophys. 51 1591

    [18]

    Liu Q H, Chew W C 1992 Radio Sci. 27 569

    [19]

    Wang H N 2011 IEEE Trans. Geosci. Remote Sens. 49 4483

    [20]

    Wang H N, So P M, Yang S W, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote Sens. 46 1134

    [21]

    Zhu T Z, Yang S W, Bai Y, Chen T, Wang H N 2017 Chin. J. Geophys. 60 1221 (in Chinese)[朱天竹, 杨守文, 白彦, 陈涛, 汪宏年 2017 地球 60 1221]

    [22]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:van Nostrand Reinhold)

  • [1]

    Edwards N 2005 Surv. Geophys. 26 675

    [2]

    Constable S 2010 Geophysics 75 75A67

    [3]

    Yuan J, Edwards N 2000 Geophys. Res. Lett. 27 2397

    [4]

    Weiss C J, Constable S 2006 Geophysics 71 G321

    [5]

    Constable S C, Weiss C J 2006 Geophysics 71 G43

    [6]

    Hoversten G M, Newman G A, Geier A, Flanagan G 2006 Geophysics 71 G239

    [7]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese)[汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]

    [8]

    Li Y G, Dai S K 2011 Geophys. J. Int. 185 622

    [9]

    Xu Z F, Wu X P 2010 Chinese J. Geophys. 53 1931 (in Chinese)[徐志锋, 吴小平 2010 地球 53 1931]

    [10]

    Shen J S 2003 Chin. J. Geophys. 46 280 (in Chinese)[沈金松 2003 地球 46 280]

    [11]

    Streich R 2009 Geophysics 74 F95

    [12]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese)[周建美, 张烨, 汪宏年, 杨守文, 殷长春 2014 63 159101]

    [13]

    Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 58 1608]

    [14]

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848]

    [15]

    Kong F N, Johnstad S E, Rösten T, Westerdahl H 2008 Geophysics 73 F9

    [16]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383

    [17]

    Wang H N, Tao H G, Yang S W 2008 Chin. J. Geophys. 51 1591

    [18]

    Liu Q H, Chew W C 1992 Radio Sci. 27 569

    [19]

    Wang H N 2011 IEEE Trans. Geosci. Remote Sens. 49 4483

    [20]

    Wang H N, So P M, Yang S W, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote Sens. 46 1134

    [21]

    Zhu T Z, Yang S W, Bai Y, Chen T, Wang H N 2017 Chin. J. Geophys. 60 1221 (in Chinese)[朱天竹, 杨守文, 白彦, 陈涛, 汪宏年 2017 地球 60 1221]

    [22]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:van Nostrand Reinhold)

  • [1] 余桂芳, 李志浩, 肖天琦, 冯田峰, 周晓祺. 基于薄膜铌酸锂的模式色散相位匹配单光子源.  , 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [2] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法.  , 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [3] 迟静, 李小雷, 高大治, 王好忠, 王宁. 利用海浪噪声自相关实现散射体无源探测.  , 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [4] 郝世峰, 楼茂园, 杨诗芳, 李超, 孔照林, 裘薇. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验.  , 2015, 64(19): 194702. doi: 10.7498/aps.64.194702
    [5] 韩祥临, 陈贤峰, 莫嘉琪. 一类量子等离子体类孤波的近似解析解.  , 2014, 63(3): 030202. doi: 10.7498/aps.63.030202
    [6] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应.  , 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [7] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法.  , 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [8] 汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春. 用改进的传输线算法计算水平层状横向同性地层中海洋可控源电磁响应.  , 2013, 62(22): 224101. doi: 10.7498/aps.62.224101
    [9] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟.  , 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [10] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解.  , 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [11] 徐志君, 施建青, 林国成. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解.  , 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [12] 陈昌远, 陆法林, 孙东升. Hulthén势散射态的解析解.  , 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [13] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算.  , 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [14] 吴亚波, 董 鹏, 赵国明, 邓雪梅. 关于稳态轴对称真空引力场方程的两个扩展解.  , 2005, 54(10): 4974-4978. doi: 10.7498/aps.54.4974
    [15] 聂在平, 王浩刚. 含腔电大尺寸导体目标电磁散射的一体化数值模拟.  , 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
    [16] 强稳朝. 半平面对称非类光电磁场产生的半平面对称静态时空的代数性质.  , 1993, 42(4): 528-535. doi: 10.7498/aps.42.528
    [17] 李鑑增, 梁灿彬. 一类半平面对称的电磁真空时空.  , 1990, 39(2): 169-176. doi: 10.7498/aps.39.169
    [18] 李鉴增, 梁灿彬. 半平面对称非类光电磁场产生的半平面对称时空.  , 1989, 38(6): 973-980. doi: 10.7498/aps.38.973
    [19] 李先枢, 徐家进. 轴对称光学无源谐振腔各阶横模的系列计算.  , 1986, 35(8): 1087-1090. doi: 10.7498/aps.35.1087
    [20] 罗正明. 环形轴对称系统准椭圆截面等离子体平衡的外部解.  , 1978, 27(4): 448-458. doi: 10.7498/aps.27.448
计量
  • 文章访问数:  5524
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map