搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究

江秀娟 唐一凡 王利 李菁辉 王博 项颖

引用本文:
Citation:

考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究

江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖

Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier

Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying
PDF
导出引用
  • 采用数值方法研究了钕玻璃放大器的增益特性对高功率激光系统中光谱色散匀滑单元性能的影响.分析结果表明,入射光中心波长与放大器增益曲线中心波长不一致时,焦斑强度分布会受到一定的影响,且该影响随放大倍数增大趋于明显,而两个波长一致时,强度分布变化较小.靶面焦斑整体的辐照均匀性则主要取决于经过相位调制后的激光束的带宽,放大器的增益特性对其空间功率谱及均匀性无明显的影响.所得结论为光谱色散匀滑单元在激光系统中的实际应用提供了重要的理论参考.
    A key issue in developing a high-power laser driver, which can be used for inertial confinement fusion and laser produced plasma experiments, is to obtain uniform irradiation on the target surface, thus a number of spatial or temporal techniques have been proposed for laser beam smoothing. A scheme combining a lens array with the technique of smoothing by spectral dispersion (SSD) is being explored in the SG-II Laser Facility located in Shanghai Institute of Optics and Fine Mechanics. As the laser system involves a variety of optical elements, their influences have to be considered in the implementation of such a scheme. The Nd:glass amplifier is one of the most important parts of the system, and the phase-modulated laser beam will propagate through it along the long light path when SSD is employed. In this paper, the performance of uniform irradiation of the target pattern is studied based on two-dimensional simulations when the gain characteristic of the amplifier is taken into account. The major factors, such as the small signal gain profile of the amplifier, the amplification factor, the bandwidth of the phase-modulated laser beam and the difference between the central wavelength of the laser and the central wavelength of the amplifier gain curve, are analyzed in detail. The numerical results show that when the central wavelength of the incident beam is different from the central wavelength of the amplifier gain curve, intensity distribution of the target pattern will be affected to a degree depending on the amplification factor; while these two wavelengths are very close to or identical with each other, variation in the intensity distribution is trivial. The symmetry of the phase-modulated laser spectrum will be destroyed due to the gain characteristic of the amplifier, especially when the bandwidth is relatively wide. However, the slight asymmetry does not result in significant influence on the spatial power spectrum nor uniformity of the target pattern, even in the case where the central wavelength of the incident beam is different from that of the amplifier gain curve. The reasons would be 1) the gain curve of the amplifier is actually quite flat within the laser bandwidth, and 2) with the technique of SSD, all spectral components contribute to the target intensity distribution within an average time. The analysis indicates that the performance of uniform irradiation of the target pattern depends mainly on the bandwidth of the phase-modulated laser beam. A wider bandwidth can always generate better irradiation when it is within a certain range, say no more than 0.3 nm, but beyond this range, the nonuniformity tends to remain at a level about 0.250.3. Multistage Nd:glass amplifiers will be employed in the practical laser driver, and the case investigated in this paper involves only one stage for simplicity. The conclusion obtained in this paper is important for implementing the technique of SSD in the laser system.
      通信作者: 江秀娟, jiangxj@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11204043,11374067)和中国科学院高功率激光物理重点实验室开放基金(批准号:SG-001103)资助的课题.
      Corresponding author: Jiang Xiu-Juan, jiangxj@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204043, 11374067) and the Open Fund of Key Laboratory for High Power Laser Physics of Chinese Academy of Sciences (Grant No. SG-001103).
    [1]

    Kilkenny J D, Glendinning S G, Haan S W 1994 Phys. Plasmas 1 1379

    [2]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [3]

    Shu H, Fu S Z, Huang X G, Ma M X, Wu J, Ye J J, He J H, Gu Y 2007 Eur. Phys. J. D 44 367

    [4]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [5]

    Regan S P, Marozas J A, Kelly J H, Bothly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Li P, Su J Q, Ma C, Zhang R, Jing F 2009 Acta Phys. Sin. 58 6210 (in Chinese) [李平, 粟敬钦, 马驰, 张锐, 景峰 2009 58 6210]

    [7]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]

    [8]

    Zhou S L, Zhu J, Li X C, Lin Z Q, Dai Y P 2006 Chin. J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [9]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 55 5824]

    [10]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, Lin Z Q 2010 Acta Optica Sin. 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [11]

    Zhang R, Wang J J, Su J Q, Liu L Q, Deng Q H 2010 Acta Phys. Sin. 59 1088 (in Chinese) [张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华 2010 59 1088]

    [12]

    Rotter M D, Mccracken R W, Erlandson A C, Guenet M 1997 Proc. SPIE 3047 178

    [13]

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801 (in Chinese) [黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 64 087801]

    [14]

    Kauffman R 1998 Inertial Confinement Fusion Annual Report UCRL-LR-105821-97

    [15]

    Jiang S E, Ding Y K, Miao W Y, Liu S Y, Zheng Z F, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. China Ser. G 39 1571 (in Chinese) [江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学 G辑 39 1571]

    [16]

    Wang X D, Zhang S K, Guo L F, Tang J, Wen G Q, Huang X J, Peng H S 1998 High Power Laser and Particle Beams 3 340 (in Chinese) [王晓东, 张树葵, 郭良福, 唐军, 文国庆, 黄小军, 彭翰生 1998 强激光与粒子束 3 340]

    [17]

    Wang J F, Zhu H D, Li X C, Zhu J Q 2008 Chin. J. Lasers 35 187 (in Chinese) [王江峰, 朱海东, 李学春, 朱健强 2008 中国激光 35 187]

    [18]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [19]

    Siegman A E 1986 Lasers (California: University Science Books) pp630-731

    [20]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuege J D 2005 J. Opt. Soc. Am. B 22 998

    [21]

    Jiang X J, Li J H 2012 Optik 123 1411

  • [1]

    Kilkenny J D, Glendinning S G, Haan S W 1994 Phys. Plasmas 1 1379

    [2]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [3]

    Shu H, Fu S Z, Huang X G, Ma M X, Wu J, Ye J J, He J H, Gu Y 2007 Eur. Phys. J. D 44 367

    [4]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [5]

    Regan S P, Marozas J A, Kelly J H, Bothly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483

    [6]

    Li P, Su J Q, Ma C, Zhang R, Jing F 2009 Acta Phys. Sin. 58 6210 (in Chinese) [李平, 粟敬钦, 马驰, 张锐, 景峰 2009 58 6210]

    [7]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]

    [8]

    Zhou S L, Zhu J, Li X C, Lin Z Q, Dai Y P 2006 Chin. J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [9]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 55 5824]

    [10]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, Lin Z Q 2010 Acta Optica Sin. 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [11]

    Zhang R, Wang J J, Su J Q, Liu L Q, Deng Q H 2010 Acta Phys. Sin. 59 1088 (in Chinese) [张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华 2010 59 1088]

    [12]

    Rotter M D, Mccracken R W, Erlandson A C, Guenet M 1997 Proc. SPIE 3047 178

    [13]

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801 (in Chinese) [黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 64 087801]

    [14]

    Kauffman R 1998 Inertial Confinement Fusion Annual Report UCRL-LR-105821-97

    [15]

    Jiang S E, Ding Y K, Miao W Y, Liu S Y, Zheng Z F, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. China Ser. G 39 1571 (in Chinese) [江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学 G辑 39 1571]

    [16]

    Wang X D, Zhang S K, Guo L F, Tang J, Wen G Q, Huang X J, Peng H S 1998 High Power Laser and Particle Beams 3 340 (in Chinese) [王晓东, 张树葵, 郭良福, 唐军, 文国庆, 黄小军, 彭翰生 1998 强激光与粒子束 3 340]

    [17]

    Wang J F, Zhu H D, Li X C, Zhu J Q 2008 Chin. J. Lasers 35 187 (in Chinese) [王江峰, 朱海东, 李学春, 朱健强 2008 中国激光 35 187]

    [18]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [19]

    Siegman A E 1986 Lasers (California: University Science Books) pp630-731

    [20]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuege J D 2005 J. Opt. Soc. Am. B 22 998

    [21]

    Jiang X J, Li J H 2012 Optik 123 1411

  • [1] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [2] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案.  , 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [3] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [4] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案.  , 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [5] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究.  , 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [6] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究.  , 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [7] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究.  , 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [8] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [9] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] 江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪. 采用透镜列阵与光谱色散改善三倍频小焦斑辐照均匀性.  , 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [11] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [12] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究.  , 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [13] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究.  , 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [14] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响.  , 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [15] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [16] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦.  , 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [18] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [19] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究.  , 2005, 54(4): 1624-1629. doi: 10.7498/aps.54.1624
    [20] 张华, 范滇元. 组合式钕玻璃片状激光放大器增益性能的动态模拟.  , 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
计量
  • 文章访问数:  5937
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-16
  • 修回日期:  2017-03-19
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map