搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光成丝诱导Cu等离子体的温度和电子密度

杨大鹏 李苏宇 姜远飞 陈安民 金明星

引用本文:
Citation:

飞秒激光成丝诱导Cu等离子体的温度和电子密度

杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星

Temperature and electron density in femtosecond filament-induced Cu plasma

Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing
PDF
导出引用
  • 研究了飞秒激光成丝诱导铜击穿光谱,利用光发射光谱对产生的铜等离子体光谱强度沿着丝长度进行了测量,获得了在不同样品与聚焦透镜间距离的Cu(I)的强度分布.结果显示,由于强度钳箍效应成丝诱导的光谱在较大的透镜样品间距离范围内有较强的辐射强度.另外,利用玻尔兹曼图和斯塔克展宽计算了整个成丝繁衍距离中Cu等离子体温度和电子密度.
    Laser-induced breakdown spectroscopy (LIBS), which is also known as laser-induced plasma spectroscopy (LIPS), is a very promising spectral analysis technique for detecting elemental composition. The possibility of remote operation of LIBS is one of the properties, which expands the application scope of this technique. The remote LIBS technique is based on a long-range lens. With the increase of focusing distance, it is difficult to tightly focus laser pulse due to the diffraction limits. The size of focusing spot increases with focusing distance increasing. This will require extremely high laser energy. Femtosecond laser filamentation due to optical Kerr effect can be applied to the remote LIBS. During the filament propagation, the waist of laser beam is close to a constant value. The laser intensity inside the filament is about 1013 W/cm2 (intensity clamping). The intensity is sufficient to ablate sample and produce the plasma. It can overcome the influence of the diffraction limit in nanosecond LIBS. Although many researchers have studied the femtosecond geometrical focusing and femtosecond filamentation LIBSs, the spectral characteristics have not been completely understood. In this paper, we study the femtosecond laser filament-induced Cu plasma spectroscopy. Femtosecond laser system is an ultrafast Ti:sapphire amplifier (Coherent Libra). The full-width at the half maximum is 50 fs at a wavelength of 800 nm with a repetition rate of 1 kHz and its output energy is 3.5 mJ. A quartz lens with a focal length of 1 m is used to focus the laser to generate a filament channel. The spectral intensity of produced Cu plasma along the filament channel is measured by using the optical emission spectroscopy, and the distribution of Cu(I) intensity versus the distance between sample and focused lens is obtained. The results indicate that in a longer distance range along the filament, plasma spectroscopy has stronger emission due to the intensity clamping effect in femtosecond laser filamentation. In addition, we also calculate the plasma temperature and electron density by using the Boltzmann plot and the Stark broadening. The plasma temperature and electron density along the filament channel can be divided into three main regions: region 1) from 950 mm to 970 mm, in which the plasma temperature and electron density increase with the increase of distance; region 2) from 970 mm to 1030 mm, in which the change of plasma excitation temperature is opposite to the change of electron density; region 3) from 1030 mm to 1050 mm, in which the plasma temperature and electron density decrease with the increase of distance.
      通信作者: 陈安民, amchen@jlu.edu.cn ; 金明星, mxjin@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674128,11474129,11504129)、吉林省科技发展计划(批准号:20170101063JC)和吉林省教育厅“十三五”科学研究规划项目(批准号:2016[400])资助的课题.
      Corresponding author: Chen An-Min, amchen@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674128, 11474129, 11504129), the Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC), and the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (Grant No. 2016[400]).
    [1]

    Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257

    [2]

    Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061

    [3]

    Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 60 045206]

    [4]

    Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640

    [5]

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206]

    [6]

    Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025

    [7]

    Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124

    [8]

    Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732

    [9]

    Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)

    [10]

    Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836

    [11]

    Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195

    [12]

    Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968

    [13]

    Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941

    [14]

    Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977

    [15]

    Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 63 095203]

    [16]

    Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 64 175203]

    [17]

    Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90

    [18]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301

    [19]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497

    [20]

    Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819

    [21]

    Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]

  • [1]

    Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257

    [2]

    Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061

    [3]

    Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 60 045206]

    [4]

    Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640

    [5]

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206]

    [6]

    Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025

    [7]

    Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124

    [8]

    Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732

    [9]

    Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)

    [10]

    Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836

    [11]

    Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195

    [12]

    Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968

    [13]

    Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941

    [14]

    Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977

    [15]

    Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 63 095203]

    [16]

    Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 64 175203]

    [17]

    Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90

    [18]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301

    [19]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497

    [20]

    Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819

    [21]

    Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布.  , 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] 付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射.  , 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [4] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制.  , 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [5] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响.  , 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [6] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [7] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布.  , 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [8] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [9] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究.  , 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [10] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素.  , 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [11] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析.  , 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [12] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量.  , 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [13] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [14] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究.  , 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [15] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究.  , 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [16] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断.  , 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [17] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析.  , 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [18] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析.  , 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  6447
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map