搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法

樊金宇 高峰 孔文 黎海文 史国华

引用本文:
Citation:

多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法

樊金宇, 高峰, 孔文, 黎海文, 史国华

A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography

Fan Jin-Yu, Gao Feng, Kong Wen, Li Hai-Wen, Shi Guo-Hua
PDF
导出引用
  • 在多面转镜激光器扫频光学相干层析成像系统中,激光器存在着输出光谱错位与扫频范围波动的问题.目前的重采样方法中,普遍利用互相关运算校正光谱错位,并进行大范围的截取,保证扫频范围的一致性,但这会导致成像信噪比与分辨率的降低.本文用马赫-曾德尔干涉仪(MZI)采集到的干涉信号对扫频范围波动的问题进行了详细的测量与分析,其中干涉信号的解缠相位曲线的非随机性和平行性,表明该类激光器输出光谱的波长分布具备一致性.在此基础上,提出了一种用最长扫频范围的MZI干涉信号,对样品干涉信号进行时域光谱对齐、然后进行一对多插值的重采样方法.实验与分析表明,该方法利用了所有的光谱信号,保证了样品干涉信号的能量利用率,能有效提高图像的信噪比与分辨率.
    Swept-source optical coherence tomography (SS-OCT) has high sensitivity and signalnoise ratio compare with time-domain optical coherence tomography and spectral-domain optical coherence tomography. Therefore, SS-OCT is the form of Fourier domain optical coherence tomography predominantly used in experimental research and biomedical image. However, polygon tunable laser-based SS-OCT suffers sweep range fluctuation and spectral misplacement. Under certain circumstances, in the current resampling methods cross-correlation is widely used to align spectrum misplacement, and truncate A-lines in order to ensure the consistency of frequency-scanning range, which, however, degrades the image SNR and resolution. We use the Mach-Zehnder interference (MZI) signal to quantify and analyze this problem in two typical polygon tunable lasers. The periodical change of sweep range and spectrum misplacement show the instability derived from polygon mirror. The parallelism among unwrapped phase curves indicates that polygon tunable laser output spectra have consistent wavelength distributions, and thus it is suited to implement cross-correlation between MZI signals in time domain, and an unwrapped phase curve can represent the wavelength distribution of all A-lines.According to the above conclusions, we demonstrate a resampling method in which the zero-padding interpolation and cross-correlation are used to align A-lines in time domain and eliminate the residual phase noise caused by integer shift. Then the unwrapped phase curve that has a largest sweep range is used to resample all the aligned A-lines, and the interference signals can be fully utilized. The experiments for signal truncation and Pomelo fruit flesh indicate that the proposed method can improve image SNR but does not make the intensity image dislocated. The phase noise (3.9 mrad for a 49 dB SNR) from static mirror is close to theory limit after resampling, thus showing good phase stability and resampling precision. The proposed resampling method also needs less computational work than one-to-one resampling method because it only fits unwrapped phase curve and calculates interpolation coefficient once.
      通信作者: 史国华, ioe_eye@126.com
    • 基金项目: 科技部重大科学仪器设备开发专项(批准号:2016YFF0102000)、中国科学院先导专项(批准号:XDB02060000)、中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC03)、江苏省杰出青年基金(批准号:BK20060010)、国家自然科学基金(批准号:61675226,61378090)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Shi Guo-Hua, ioe_eye@126.com
    • Funds: Project supported by the National Instrumentation Program, China (Grant No. 2016YFF0102000), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB02060000), the Frontier Science Research Project of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC03), the Science Fund for Distinguished Young Scholars of Jiangsu Province, China (Grant No. BK20060010), the National Natural Science Foundation of China (Grant Nos. 61675226, 61378090), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
    [1]

    Yun S H, Tearney G, de Boer J F, Bouma B 2003 Opt. Express 12 2977

    [2]

    You J W, Chen T C, Mujat M, Park B H, de Boer J F 2006 Opt. Express 14 6739

    [3]

    Chen M H, Ding Z H, Wang C, Song C L 2013 Acta Phys. Sin. 62 068703 (in Chinese) [陈明惠, 丁志华, 王成, 宋成利 2013 62 068703]

    [4]

    Yun S H, Boudoux C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 1981

    [5]

    Huo T, Zhang J, Zheng J, Chen T, Wang C, Zhang N, Liao W, Zhang X, Xue P 2014 Opt. Lett. 39 247

    [6]

    Wang P H, Zhang J, Liu G J, Chen Z P 2011 SPIE BiOS. International Society for Optics and Photonics San Francisco, USA, January 22, 2011 p78892Q

    [7]

    Pan C, Guo L, Shen Y, Yan X G, Ding Z H, Li P 2016 Acta Phys. Sin. 65 014201 (in Chinese) [潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏 2016 65 014201]

    [8]

    Liu G J, Tan O, Gao S S, Pechauer A D, Lee B, Lu C D, Fujimoto J G, Huang D 2015 Opt. Express 23 9824

    [9]

    Braaf B, Vermeer K A, Sicam V A D P, van Zeeburg E, van Meurs J C, de Boer J F 2011 Opt. Express 19 20886

    [10]

    Shangguan Z W, Shen Y, Li P, Ding Z H 2016 Acta Phys. Sin. 65 034201 (in Chinese) [上官紫薇, 沈毅, 李鹏, 丁志华 2016 65 034201]

    [11]

    Yasuno Y, Madjarova V D, Makita S, Akiba M, Morosawa A, Chong C, Sakai T, Chan K P, Itoh M, Yatagai T 2005 Opt. Express 13 10652

    [12]

    Gora M, Karnowski K, Szkulmowski M, Kaluzny B J, Huber R, Kowalczyk A, Wojtkowski M 2009 Opt. Express 17 14880

    [13]

    Zhang Y D, Li X Q, Wei L, Wang K, Ding Z H, Shi G H 2009 Opt. Lett. 34 1849

    [14]

    Vakoc B J, Yun S H, de Boer J F, Tearney G J, Bouma B E 2005 Opt. Express 13 5483

    [15]

    Choma M A, Ellerbee A K, Yazdanfar S, Izatt J A 2006 J. Biomed. Opt. 11 024014

    [16]

    Choma M A, Ellerbee A K, Yang C, Creazzo T L, Izatt J A 2005 Opt. Lett. 30 1162

  • [1]

    Yun S H, Tearney G, de Boer J F, Bouma B 2003 Opt. Express 12 2977

    [2]

    You J W, Chen T C, Mujat M, Park B H, de Boer J F 2006 Opt. Express 14 6739

    [3]

    Chen M H, Ding Z H, Wang C, Song C L 2013 Acta Phys. Sin. 62 068703 (in Chinese) [陈明惠, 丁志华, 王成, 宋成利 2013 62 068703]

    [4]

    Yun S H, Boudoux C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 1981

    [5]

    Huo T, Zhang J, Zheng J, Chen T, Wang C, Zhang N, Liao W, Zhang X, Xue P 2014 Opt. Lett. 39 247

    [6]

    Wang P H, Zhang J, Liu G J, Chen Z P 2011 SPIE BiOS. International Society for Optics and Photonics San Francisco, USA, January 22, 2011 p78892Q

    [7]

    Pan C, Guo L, Shen Y, Yan X G, Ding Z H, Li P 2016 Acta Phys. Sin. 65 014201 (in Chinese) [潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏 2016 65 014201]

    [8]

    Liu G J, Tan O, Gao S S, Pechauer A D, Lee B, Lu C D, Fujimoto J G, Huang D 2015 Opt. Express 23 9824

    [9]

    Braaf B, Vermeer K A, Sicam V A D P, van Zeeburg E, van Meurs J C, de Boer J F 2011 Opt. Express 19 20886

    [10]

    Shangguan Z W, Shen Y, Li P, Ding Z H 2016 Acta Phys. Sin. 65 034201 (in Chinese) [上官紫薇, 沈毅, 李鹏, 丁志华 2016 65 034201]

    [11]

    Yasuno Y, Madjarova V D, Makita S, Akiba M, Morosawa A, Chong C, Sakai T, Chan K P, Itoh M, Yatagai T 2005 Opt. Express 13 10652

    [12]

    Gora M, Karnowski K, Szkulmowski M, Kaluzny B J, Huber R, Kowalczyk A, Wojtkowski M 2009 Opt. Express 17 14880

    [13]

    Zhang Y D, Li X Q, Wei L, Wang K, Ding Z H, Shi G H 2009 Opt. Lett. 34 1849

    [14]

    Vakoc B J, Yun S H, de Boer J F, Tearney G J, Bouma B E 2005 Opt. Express 13 5483

    [15]

    Choma M A, Ellerbee A K, Yazdanfar S, Izatt J A 2006 J. Biomed. Opt. 11 024014

    [16]

    Choma M A, Ellerbee A K, Yang C, Creazzo T L, Izatt J A 2005 Opt. Lett. 30 1162

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器.  , 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为.  , 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [3] 龙康, 孔明, 刘璐, 刘维, 华杭波, 许新科. 基于Lomb-Scargle算法的激光扫频干涉非线性校正方法.  , 2023, 72(3): 034205. doi: 10.7498/aps.72.20221754
    [4] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计.  , 2022, 71(5): 058703. doi: 10.7498/aps.71.20211375
    [5] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计.  , 2021, (): . doi: 10.7498/aps.70.20211375
    [6] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法.  , 2021, 70(3): 034205. doi: 10.7498/aps.70.20201135
    [7] 汪毅, 刘珊珊, 张玮茜, 蔡怀宇, 陈晓冬. 扫频光学相干层析角膜图像轮廓自动提取算法.  , 2019, 68(20): 204201. doi: 10.7498/aps.68.20190731
    [8] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器.  , 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [9] 王一鸣, 胡陈晨, 刘泉, 郭会勇, 殷广林, 李政颖. 基于连续扫频光时域反射的全同弱光栅高速解调方法.  , 2016, 65(20): 204209. doi: 10.7498/aps.65.204209
    [10] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究.  , 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [11] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法.  , 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [12] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法.  , 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [13] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究.  , 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [14] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器.  , 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [15] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法.  , 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [16] 陈明惠, 丁志华, 王成, 宋成利. 基于法布里-珀罗调谐滤波器的傅里叶域锁模扫频激光光源.  , 2013, 62(6): 068703. doi: 10.7498/aps.62.068703
    [17] 严雄伟, 於海武, 郑建刚, 李明中, 蒋新颖, 段文涛, 曹丁象, 王明哲, 单小童, 张永亮. 梯度掺杂Yb ∶YAG重频激光器热管理研究.  , 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [18] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量.  , 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [19] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响.  , 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [20] 严雄伟, 於海武, 曹丁象, 李明中, 郑建刚, 蒋东镔, 蒋新颖, 段文涛, 王明哲. 重频Yb:YAG片状激光器电光调Q时空演化模拟计算和实验研究.  , 2009, 58(8): 5798-5804. doi: 10.7498/aps.58.5798
计量
  • 文章访问数:  6425
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2017-04-09
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map