搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究

余庚华 刘鸿 赵朋义 徐炳明 高当丽 朱晓玲 杨维

引用本文:
Citation:

采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究

余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维

Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method

Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei
PDF
导出引用
  • 利用相对论多组态Dirac-Hartree-Fock方法研究了Mg原子基态到低激发态1S0-1P1和1S0-3P1两条跃迁谱线的同位素位移参数,包括正常质量位移系数,特殊质量位移系数和场位移因子,并计算了24Mg,25Mg和26Mg三个稳定同位素的同位素位移.在计算中采用了一种受限制的双电子激发模式,并将同位素位移计算结果与已有的实验测量和理论计算结果进行了对比.结果表明,用本文的研究方法计算的Mg原子同位素位移与其他理论结果和实验测量值十分符合.本文的计算结果可以为20-40Mg同位素位移测量实验提供必要的参考,所用的计算方法也可以应用到其他类Mg体系(核外电子数等于12的离子)等多电子离子的光谱结构计算和同位素位移的研究中.
    The isotope shift parameters for the atomic transitions 1S0-1P1 and 1S0-3P1 of Mg are calculated by the relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) method, including the normal mass shift (NMS) coefficients, the specific mass shift (SMS) coefficients and the field shift (FS) factors. The detailed calculations of the isotope shifts for the three stable isotopes 24Mg, 25Mg and 26Mg are also carried out, in which the GRASP2K package is used together with another modified relativistic isotope shift computation code package RIS3. The two-parameter Fermi model is used here to describe the nuclear charge distribution in order to calculate the field shift by the first-order perturbation. A restricted double excitation mode is used in our calculations, one electron is excited from the two electrons in the 3s shell (3s2), another electron is excited from the eight electrons in the 2s or 2p shells (2s22p6), and the two electrons in the 1s shell (1s2) are not excited. The active configurations are expanded from the occupied orbitals to some active sets layer by layer, each correlation layer is numbered by the principal quantum numbers n (n= 3, 4, 5, …) and contains the corresponding orbitals s, p, d, …. The active configurations with the mixing coefficients in the added layer can be optimized by the MCDHF calculations. In this work, the atomic state functions are optimized simultaneously by the self-consistent field method and the relativistic configuration interaction approach in which the Breit interaction is taken into account perturbatively as well. The maximum principal quantum number n equals 10 and the largest orbital quantum number lmax is g. In our calculations, the NMS coefficients are -576.8 and -359.9 GHz·u, the SMS coefficients are 133.9 and -479.6 GHz·u, and the FS factors are -62.7 and -78.0 MHz·fm-2 for the 1S0-1P1 and 1S0-3P1 transitions of Mg, respectively. The difference between our isotope shift calculations and the previous experimental measurements is in a range from 6 MHz to 20 MHz with the relative error range from 0.6% to 1.3%, which shows that our results are in good agreement with experimental values. Our calculations are also coincident with other theoretical results. The isotope shift parameters provided here can be applied to the quick calculations of isotope shifts for the short-lived Mg isotopes, including 20-23Mg and 27-40Mg, and can be referred to for the corresponding isotope shift experiments. The methods used here canbe applied to calculating the isotope shifts and the atomic spectroscopic structures for other Mg-like ions with twelve extranuclear electrons.
      通信作者: 余庚华, genghuayu@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11304093,11604253)、陕西省青年科技新星项目(批准号:2015KJXX-33)和四川省教育厅科研基金(批准号:14ZB0375)资助的课题.
      Corresponding author: Yu Geng-Hua, genghuayu@aliyun.com
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 11304093, 11604253), the Plan Project of Youth Science and Technology New Star of Shaanxi Province (Grant No. 2015KJXX-33), and the Fund of the Scientific Research Foundation of Sichuan Provincial Department of Education (Grant No. 14ZB0375).
    [1]

    Anders M, Trezzi D, Menegazzo R, Aliotta M, Bellini A, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Davinson T, Elekes Z, Erhard M, Formicola A, Flöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyrky G, Junker M, Lemut A, Marta M, Mazzocchi C, Prati P, Rossi-Alvarez C, Scott DA, Somorjai E, Straniero O, Szcs T 2014 Phys. Rev. Lett. 113 042501

    [2]

    Nörtershäuser W, Neff T, Sanchez R, Sick I 2011 Phys. Rev. C 84 024307

    [3]

    Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G, Stöhlker T 2008 Phys. Rev. A 77 032501

    [4]

    Hu M H, Wang Z W, Zeng F W, Wang T, Wang J 2011 Chin. Phys. B 20 083101

    [5]

    Pachucki K, Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 83

    [6]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 60 113201]

    [7]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev. C 72 044309

    [8]

    Drake G W F, Nörtershäuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [9]

    Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T, Zimmermann C 2009 Phys. Rev. Lett. 102 062503

    [10]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [11]

    Paez E, Arnold K J, Hajiyev E, Porsev S G, Dzuba V A, Safronova U I, Safronova M S, Barrett M D 2016 Phys. Rev. A 93 042112

    [12]

    Safronova M S, Safronova U I, Clark C W 2015 Phys. Rev. A 91 022504

    [13]

    Sahoo B K 2010 J. Phys. B At. Mol. Opt. Phys. 43 231001

    [14]

    Berengut J C, Dzuba V A, Flambaum V V, Kozlov M G 2004 Phys. Rev. A 69 044102

    [15]

    Steenstrup M P, Brusch A, Jensen B B, Hald J, Thomsen J W 2010 Phys. Rev. A 82 054501

    [16]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [17]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511

    [18]

    Yu G H, Geng Y G, Zhou C, Duan C B, Li L, Chai R P, Yang Y M 2015 Chin. Phys. Lett. 32 073102

    [19]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [20]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [21]

    Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, Jönsson P 2015 Chin. Phys. B 24 043103

    [22]

    Parpia F A, Mohanty A K 1992 Phys. Rev. A 46 3735

    [23]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev. A 93 062512

    [24]

    Berengut J C, Flambaum V V, Kozlov M G 2005 Phys. Rev. A 72 044501

    [25]

    Konovalova E A, Kozlov M G 2015 Phys. Rev. A 92 042508

    [26]

    Korol V A, Kozlov M G 2007 Phys. Rev. A 76 022103

    [27]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [28]

    Beverini N, Maccioni E, Pereira D, Strumia F, Vissani G, Wang Y Z 1990 Opt. Commun. 77 299

    [29]

    Sterr U, Sengstock K, Mller J H, Ertmer W 1993 Appl. Phys. B Photophys. Laser Chem. 56 62

    [30]

    Salumbides E J, Hannemann S, Eikema K S E, Ubachs W 2006 Mon. Not. R. Astron. Soc. 373 41

    [31]

    Hallstadius L 1979 Z. Phys. A 291 203

    [32]

    Boiteux S L, Klein A, Leite J R R, Ducloy M 1988 J. Phys. France 49 885

    [33]

    Huang K N, Aoyagi M, Chen M, Crasemann B 1976 At. Data Nucl. Data Tables 18 243

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Liang Z Y, Liu J H, Liu M, Wang N 2011 Nucl. Phys. Rev. 28 257 (in Chinese) [梁祚盈, 刘俊华, 刘敏, 王宁 2011 原子核物理评论 28 257]

    [36]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304

    [37]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [38]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [39]

    Mohr P J, Plunien G, Soff G 1998 Physics Reports 293 227

    [40]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [41]

    Yan Z C, Drake G W F 2002 Phys. Rev. A 66 042504

    [42]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

  • [1]

    Anders M, Trezzi D, Menegazzo R, Aliotta M, Bellini A, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Davinson T, Elekes Z, Erhard M, Formicola A, Flöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyrky G, Junker M, Lemut A, Marta M, Mazzocchi C, Prati P, Rossi-Alvarez C, Scott DA, Somorjai E, Straniero O, Szcs T 2014 Phys. Rev. Lett. 113 042501

    [2]

    Nörtershäuser W, Neff T, Sanchez R, Sick I 2011 Phys. Rev. C 84 024307

    [3]

    Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G, Stöhlker T 2008 Phys. Rev. A 77 032501

    [4]

    Hu M H, Wang Z W, Zeng F W, Wang T, Wang J 2011 Chin. Phys. B 20 083101

    [5]

    Pachucki K, Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 83

    [6]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 60 113201]

    [7]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev. C 72 044309

    [8]

    Drake G W F, Nörtershäuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [9]

    Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T, Zimmermann C 2009 Phys. Rev. Lett. 102 062503

    [10]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [11]

    Paez E, Arnold K J, Hajiyev E, Porsev S G, Dzuba V A, Safronova U I, Safronova M S, Barrett M D 2016 Phys. Rev. A 93 042112

    [12]

    Safronova M S, Safronova U I, Clark C W 2015 Phys. Rev. A 91 022504

    [13]

    Sahoo B K 2010 J. Phys. B At. Mol. Opt. Phys. 43 231001

    [14]

    Berengut J C, Dzuba V A, Flambaum V V, Kozlov M G 2004 Phys. Rev. A 69 044102

    [15]

    Steenstrup M P, Brusch A, Jensen B B, Hald J, Thomsen J W 2010 Phys. Rev. A 82 054501

    [16]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [17]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511

    [18]

    Yu G H, Geng Y G, Zhou C, Duan C B, Li L, Chai R P, Yang Y M 2015 Chin. Phys. Lett. 32 073102

    [19]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [20]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [21]

    Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, Jönsson P 2015 Chin. Phys. B 24 043103

    [22]

    Parpia F A, Mohanty A K 1992 Phys. Rev. A 46 3735

    [23]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev. A 93 062512

    [24]

    Berengut J C, Flambaum V V, Kozlov M G 2005 Phys. Rev. A 72 044501

    [25]

    Konovalova E A, Kozlov M G 2015 Phys. Rev. A 92 042508

    [26]

    Korol V A, Kozlov M G 2007 Phys. Rev. A 76 022103

    [27]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [28]

    Beverini N, Maccioni E, Pereira D, Strumia F, Vissani G, Wang Y Z 1990 Opt. Commun. 77 299

    [29]

    Sterr U, Sengstock K, Mller J H, Ertmer W 1993 Appl. Phys. B Photophys. Laser Chem. 56 62

    [30]

    Salumbides E J, Hannemann S, Eikema K S E, Ubachs W 2006 Mon. Not. R. Astron. Soc. 373 41

    [31]

    Hallstadius L 1979 Z. Phys. A 291 203

    [32]

    Boiteux S L, Klein A, Leite J R R, Ducloy M 1988 J. Phys. France 49 885

    [33]

    Huang K N, Aoyagi M, Chen M, Crasemann B 1976 At. Data Nucl. Data Tables 18 243

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Liang Z Y, Liu J H, Liu M, Wang N 2011 Nucl. Phys. Rev. 28 257 (in Chinese) [梁祚盈, 刘俊华, 刘敏, 王宁 2011 原子核物理评论 28 257]

    [36]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304

    [37]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [38]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [39]

    Mohr P J, Plunien G, Soff G 1998 Physics Reports 293 227

    [40]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [41]

    Yan Z C, Drake G W F 2002 Phys. Rev. A 66 042504

    [42]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比.  , 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究.  , 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [3] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [4] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究.  , 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [5] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移.  , 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [6] 梁琴, 陈征宇. 受限液晶系统的理论新进展.  , 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [7] 蒋滢, 陈征宇. 蠕虫状链模型在高分子物理研究中的应用.  , 2016, 65(17): 178201. doi: 10.7498/aps.65.178201
    [8] 樊娟娟, 于秀玲, 梁雪梅. AB/CD嵌段共聚物共混体系多尺度结构的自洽场模拟.  , 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [10] 范凤英, 王立军. 激光线宽和光强对同位素原子选择光电离的影响.  , 2011, 60(9): 093203. doi: 10.7498/aps.60.093203
    [11] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究.  , 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [12] 令狐荣锋, 徐梅, 王晓璐, 吕兵, 杨向东. Ne原子与H2分子碰撞的同位素替代效应研究.  , 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [13] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用.  , 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面.  , 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [15] 李 明, 诸跃进. 嵌段共聚物受限于软孔内的自组装.  , 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [16] 郑里平, 张虎勇, 王庭太, 马余刚. PKA原子和SKA原子对同位素(溅射)富集度的贡献分析.  , 2004, 53(5): 1577-1582. doi: 10.7498/aps.53.1577
    [17] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究.  , 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [18] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算.  , 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] 戴长建, 于长江. 脉冲激光场选择性光电离同位素原子.  , 1994, 43(3): 356-368. doi: 10.7498/aps.43.356
    [20] 朱熙文. 通过极化原子束的磁偏转实现激光同位素浓缩.  , 1984, 33(11): 1605-1609. doi: 10.7498/aps.33.1605
计量
  • 文章访问数:  6224
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-01
  • 修回日期:  2017-01-01
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map