-
通过基于密度泛函理论的第一原理计算,系统研究了石墨炔衍生物的结构稳定性、原子构型和电子性质.石墨炔衍生物的结构是由碳六元环以及连接六元环间的碳链组成,碳链上的碳原子数为N=16.研究结果表明,碳链上碳原子数的奇偶性对石墨炔衍生物的结构稳定和相应的原子构型、电子结构性质具有很大的影响.其奇偶性规律为: 当六元环间的碳原子数为奇数时,体系中的碳链均为双键排布,系统呈现金属性;当六元环间的碳原子数为偶数时,系统中的碳链形式为单、三键交替排列,体系为直接带隙的半导体.直接带隙的存在能够促进光电能的高效转换,预示着石墨炔在光电子器件中的应用优势.N= 2,4,6的带隙分布在0.940.84 eV之间,带隙的大小与碳链上三键的数量和长度有关.研究表明,将碳原子链引入到石墨烯碳六元环之间,通过控制引入的碳原子个数可以调控其金属和半导体电子特性,为设计和制备基于碳原子的可调控s-p杂化的二维材料和纳米电子器件提供了理论依据.A new carbon allotropegraphyne has attracted a lot of attention in the field of material sciences and condensed-matter physics due to its unique structure and excellent electronic, optical and mechanical properties. First-principles calculations based on the density functional theory (DFT) are performed to investigate the structures, energetic stabilities and electronic structures of -graphyne derivatives ( -N). The studied -graphyne derivative consists of hexagon carbon rings connected by onedimensional carbon chains with various numbers of carbon atoms (N=1-6) on the chain. The calculation results show that the parity of number of carbon atoms on the carbon chains has a great influence on the structural configuration, the structural stability and the electronic property of the system. The -graphyne derivatives with odd-numbered carbon chains possess continuous CC double bonds, energetically less stable than those with even-numbered carbon chains which have alternating single and triple CC bonds. The electronic structure calculations indicate that -graphyne derivatives can be either metallic (when N is odd) or direct band gap semiconducting (when N is even). The existence of direct band gap can promote the efficient conversion of photoelectric energy, which indicates the advantage of -graphyne in the optoelectronic device. The band gaps of -2, 4, 6 are between 0.94 eV and 0.84 eV, the gap decreases with the number of triple CC bonds increasing, and increases with the augment of length of carbon chains in -2, 4, 6. Our first-principles studies show that introducing carbon chains between the hexagon carbon rings of graphene gives us a method to switch between metallic and semiconducting electronic structures by tuning the number of carbon atoms on the chains and provides a theoretical basis for designing and preparing the tunable s-p hybridized two-dimensional materials and nanoelectronic devices based on carbon atoms.
-
Keywords:
- graphyne /
- carbon chain /
- sp/sp2 hybrid /
- first-principle calculations
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[6] Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348
[7] Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019
[8] Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501
[9] Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788
[10] Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075
[11] Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413
[12] Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401
[13] Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 59 6438]
[14] Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 59 4162]
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[16] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[17] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206
[18] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662
[19] Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142
[20] Wang S K, Wang J 2015 Phys. Rev. B 92 075419
[21] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[22] Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466
[23] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951
[24] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[25] Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142
[26] Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524
[27] Hirsch A 2010 Nat. Mater. 9 868
[28] Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[29] Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804
[30] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256
[31] Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845
[32] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951
[33] Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221
[34] Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904
[35] Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919
[36] Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434
[37] Lin S C, Buehler M 2013 J. Nanoscale 5 11801
[38] Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451
[39] Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448
[40] Brumfel G 2009 Nature 458 390
[41] Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919
[42] Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610
[43] Singh A K, Yakobson B I 2009 Nano Lett. 9 1540
[44] Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315
[45] Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651
[46] Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420
[47] Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607
[48] Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412
[49] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[50] Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401
[51] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[52] Schirber M 2012 Physics 5 24
[53] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[54] Blochl P E 1994 Phys. Rev. B 50 17953
[55] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[56] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[57] Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964
[58] Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108
-
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[6] Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348
[7] Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019
[8] Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501
[9] Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788
[10] Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075
[11] Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413
[12] Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401
[13] Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 59 6438]
[14] Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 59 4162]
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[16] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
[17] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206
[18] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662
[19] Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142
[20] Wang S K, Wang J 2015 Phys. Rev. B 92 075419
[21] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[22] Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466
[23] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951
[24] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[25] Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142
[26] Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524
[27] Hirsch A 2010 Nat. Mater. 9 868
[28] Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[29] Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804
[30] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256
[31] Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845
[32] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951
[33] Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221
[34] Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904
[35] Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919
[36] Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434
[37] Lin S C, Buehler M 2013 J. Nanoscale 5 11801
[38] Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451
[39] Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448
[40] Brumfel G 2009 Nature 458 390
[41] Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919
[42] Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610
[43] Singh A K, Yakobson B I 2009 Nano Lett. 9 1540
[44] Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315
[45] Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651
[46] Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420
[47] Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607
[48] Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412
[49] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[50] Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401
[51] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[52] Schirber M 2012 Physics 5 24
[53] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[54] Blochl P E 1994 Phys. Rev. B 50 17953
[55] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[56] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[57] Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964
[58] Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108
计量
- 文章访问数: 7591
- PDF下载量: 368
- 被引次数: 0